Research Progress and Prospect of Functional Thin Films & Hard Protective Coatings

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Thin Films".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 1489

Special Issue Editor


E-Mail Website
Guest Editor
School of Physics & Electronic Technology, Liaoning Normal University, Huanghe Road, No. 850, Shahekou District, Dalian, China
Interests: photoelectric detection films and devices; hard coatings by Physical Vapor Deposition (PVD), and Chemical Vapor Deposition (CVD) methods; solar selective absorber coatings; first-principle calculations for nitrides and oxides

Special Issue Information

Dear Colleagues,

Functional thin films and hard protective coatings are indispensable in advancing material performance across a broad range of industrial and technological domains. This Special Issue seeks to showcase state-of-the-art research and emerging trends in the design, synthesis, and applications of these coatings. It aims to explore their role in addressing challenges in durability, functionality, and environmental sustainability. Contributions are encouraged in areas ranging from fundamental studies to innovative applications, focusing on coating methods, novel materials, and advanced characterization techniques. 

This Special Issue will address (but is not limited to) the following topics: 

- Advanced deposition techniques for thin films and coatings, including Physical Vapor Deposition(PVD), Chemical Vapor Deposition(CVD), plasma electrolytic oxidation (PEO), and additive manufacturing methods like laser and 3D printing. 

- Thin films for photoelectric detection, including those for UV, infrared detection, and other electromagnetic signals. 

- Conducting oxide thin films transparent across infrared, visible, or UV spectra. 

- High-entropy alloy coatings and their nitride or oxide derivatives. 

- Hard coatings for enhanced wear, corrosion, and oxidation resistance. 

- Diamond- and carbon-based thin films and coatings. 

- Optical thin film materials: their design, preparation, and applications. 

- Functional thin films and coatings for aerospace applications, including thermal control and protection, wear resistance, and anti-corrosion properties. 

- Surface modification techniques, such as nitriding, boriding, and aluminizing, to enhance coating performance. 

- Multi-layered, nanostructured, and composite thin films for AI and machine learning. 

- Coatings with self-healing, anti-reflective, or photocatalytic functionalities. 

- Computational & modeling for film/coating design and performance prediction. 

I look forward to receiving your contributions.

Prof. Dr. Min Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional thin films and devices
  • hard protective coatings
  • advanced deposition techniques
  • surface treatment & modification
  • computations and modeling for materials design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2562 KiB  
Article
Biocompatibility of Titanium Oxide Nanotubes Layer Formed on a Ti-6Al-4V Dental Implant Screw in hFOB Cells In Vitro
by José Luis Castrejón Flores, Ángel Daniel Campos Juarez, Alexis Chino Ulloa, Fernando Nava Palafox, David Cruz Ortiz and Itzel Pamela Torres Avila
Coatings 2025, 15(6), 715; https://doi.org/10.3390/coatings15060715 - 13 Jun 2025
Viewed by 398
Abstract
The surface modification of dental implants with nanostructured films enables the development of the next generation of biomaterials that promote osseointegration. In this study, a uniform layer of titanium oxide nanotubes (TNTs) was successfully formed on a Ti-6Al-4V dental implant screw through anodic [...] Read more.
The surface modification of dental implants with nanostructured films enables the development of the next generation of biomaterials that promote osseointegration. In this study, a uniform layer of titanium oxide nanotubes (TNTs) was successfully formed on a Ti-6Al-4V dental implant screw through anodic oxidation. TNTs were morphologically characterized by Scanning Electron Microscopy (SEM), obtaining dimensions of 64.88 ± 10 nm in diameter and 5.34 ± 5 µm in length. Additionally, a crystal size of 23.45 nm was determined by X-ray diffraction (XRD) analysis. The TNT layer on the dental implant screw was evaluated in an in vitro system in direct contact with human osteoblast cells (hFOB) for 24 h and 48 h, finding cell growth near to the screw threads. Further, the biocompatibility of the dental screw coated with TNTs was evaluated using a flow cytometric assay with 7-AAD, demonstrating that cell viability was not affected at 24 h and 48 h. This study opens the perspective of the study of inflammation and osseointegration induced by implants coated with TNTs. Full article
Show Figures

Figure 1

14 pages, 3417 KiB  
Article
The Influence of Water Content in Ethylene Glycol Electrolyte on Magnesium Plasma Electrolytic Fluorinated Coating
by Yifeng Yang, Hao Wang, Xuchen Lu and Cancan Liu
Coatings 2025, 15(6), 701; https://doi.org/10.3390/coatings15060701 - 11 Jun 2025
Viewed by 276
Abstract
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on [...] Read more.
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on the microstructure and corrosion resistance of the PEF coatings were analyzed. The results showed that the addition of water promoted the ionization of ammonium fluoride and increased the conductivity of the glycol electrolyte, which led to a decrease in the termination voltage. However, the coating thickness was not changed by the addition of water. The O element in water was not enough to compete with the F element in the electrolyte and had a small effect on the PEF coating composition, which was still dominated by MgF2. The addition of water had an effect on the structure of the coating: with an increase in water content, the number of coating penetration holes decreases, and the continuity is enhanced. The pores on the surface of the coating tended to be levelled off and transitioned to the typical coating structure of PEO (plasma electrolytic oxidation). The addition of water to the glycol electrolyte was conducive to improving the corrosion resistance of the coatings. The corrosion resistance of PEF coatings in neutral NaCl corrosive medium firstly increased and then decreased, and the strongest corrosion resistance was obtained when the ratio of glycol and water is 6:4. Full article
Show Figures

Figure 1

13 pages, 1995 KiB  
Article
Tuning Electrical and Optical Properties of SnO2 Thin Films by Dual-Doping Al and Sb
by Yuxin Wang, Hongyu Zhang, Xinyi Zhang, Zhengkai Zhou and Lu Wang
Coatings 2025, 15(6), 669; https://doi.org/10.3390/coatings15060669 - 30 May 2025
Viewed by 424
Abstract
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when [...] Read more.
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when the aluminum doping amount was 15 at%, the resistivity of the sample was the lowest, and the overall optoelectronic performance was the best. Moreover, the Al-SnO2 composite thin film transformed from an n-type semiconductor to a p-type semiconductor. When Al and Sb were co-doped, the carrier concentration increased significantly from 4.234 × 1019 to 6.455 × 1020. Finally, the conduction type of the Al-Sb-SnO2 composite thin film changed from p-type to n-type. In terms of optical performance, the transmittance of the Al-Sb co-doped SnO2 composite thin films in the visible light region was significantly improved, reaching up to 80% on average, which is favorable for applications in transparent optoelectronic devices. Additionally, the absorption edge of the thin films exhibited a blue-shift after co-doping, indicating an increase in the bandgap energy, which can be exploited to tune the light-absorption properties of the thin films for specific photonic applications. Full article
Show Figures

Figure 1

Back to TopTop