Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Characterization and Testing
3. Results
3.1. Physical Properties
3.2. Tribological Properties
3.3. Wear Morphology
4. Discussion
5. Conclusions
- (1)
- PTFE disrupts UHMWPE crystallization, reducing melting temperature by up to 2.77 °C and enhancing energy dissipation; all composites exhibit hydrophobicity, with UPP3/UPP4 achieving superhydrophobicity (contact angle > 150°).
- (2)
- UPPs deliver ultra-low friction (COF < 0.2), where UPP1 reaches a minimum COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load/speed conditions.
- (3)
- XPS validates UHMWPE oxidative degradation forming carboxylic acids, alongside tungsten oxides, carbides and PTFE transfer films on steel counterparts. A four-step reaction pathway (chain scission → radical oxidation → aldehyde conversion → carboxylic acid) is established.
- (4)
- Synergistic mechanisms are uncovered: PVA improves dispersion/binding for rapid transfer films; PTFE lamellar peeling enables lubrication; UHMWPE stabilizes mechanical support. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive “hard particle” effects.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Du, G.; Guo, J.; Wang, J.; Bian, D.; Zhang, X. Tribological behavior of 3D printed nanofluid reinforced photosensitive self-lubricating polymer materials. Addit. Manuf. 2024, 80, 103959. [Google Scholar] [CrossRef]
- Wang, H.; Qi, X.; Liang, L.; Wang, Y.; Zhang, J.; Meng, X. Tribological properties of graphene oxide reinforced PPTA/PTFE composites. J. Mater. Res. Technol. 2023, 23, 3505–3514. [Google Scholar] [CrossRef]
- Hussain, O.; Saleem, S.S.; Ahmad, B. Friction and wear performance evaluation of UHMWPE using Taguchi based grey approach: A study on the influence of load and bio-serum lubrication. Mater. Chem. Phys. 2020, 239, 121918. [Google Scholar] [CrossRef]
- Ning, M.; Sun, W.; Kong, L.; Han, W.; Xu, Y.; Shi, B.; Li, P.; Li, J.; Song, G. Superhydrophobic anti-fouling medicine box material: A dual modification method of UHMWPE surface melting snow wax. J. Appl. Polym. Sci. 2024, 141, 44. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Gote, R.P.; Romano, D.; van der Eem, J.; Zhao, J.; Zhou, F.; Rastogi, S. Unprecedented Mechanical Properties in Linear UHMWPE Using a Heterogeneous Catalytic System. Macromolecules 2023, 56, 1. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Suan, T.N.; Ivanova, L.R.; Korchagin, M.A.; Shil’ko, S.V.; Pleskachevskii, Y.M. Wear resistance of composites based on hybrid UHMWPE–PTFE matrix: Mechanical and tribotechnical properties of the matrix. J. Frict. Wear 2015, 36, 249–256. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kailas, S.V. Role of surface texture and roughness parameters on friction and transfer film formation when UHMWPE sliding against steel. Biosurf. Biotribol. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Chen, Q.; Li, P.; Zhou, A.; Cao, X.; Hu, Q. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 2016, 92, 682–689. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.B.; Khan, A. Optimization on wear performance of UHMWPE composites using response surface methodology. Tribol. Int. 2015, 88, 252–262. [Google Scholar] [CrossRef]
- Chih, A.; Ansón-Casaos, A.; Puértolas, J.A. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol. Int. 2017, 116, 295–302. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Wang, Y.; Yan, F. Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites. Surf. Interface Anal. 2016, 48, 139–145. [Google Scholar] [CrossRef]
- Chukov, D.I.; Stepashkin, A.A.; Maksimkin, A.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Kuskov, K.V.; Bugakov, V.I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B Eng. 2015, 76, 79–88. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Gao, J.; Yue, H. Tribological properties of self-reinforced ultra-high molecular weight polyethylene composites. Mater. Express 2015, 5, 146–152. [Google Scholar] [CrossRef]
- Cai, T.; Zhan, S.; Yang, T.; Jia, D.; Tu, J.; Li, Y.; Li, J.; Duan, H. Influence mechanism of organic-modified α-zirconium phosphate on tribological properties of UHMWPE. Wear 2023, 512, 204548. [Google Scholar] [CrossRef]
- Belotti, L.P.; Vadivel, H.S.; Emami, N. Tribological performance of hygrothermally aged UHMWPE hybrid composite. Tribol. Int. 2019, 138, 150–156. [Google Scholar] [CrossRef]
- Zhen, J.; Han, Y.; Zhu, L.; Hou, W.; Liu, Y.; Huang, W.; Yang, L.; Yuan, L.; Jia, Z.; Zhang, R. MoS2/CF synergistic enhancement to improve the friction and wear properties of UHMWPE composites. Tribol. Int. 2023, 179, 108097. [Google Scholar] [CrossRef]
- Zheng, Z.; Dong, C.; Bai, X.; Yuan, C.; Cai, T. A novel biomimetic strategy for improving lubrication performances of modified UHMWPE inspired by the slippery gel release behavior of chia seeds. Compos. Part B Eng. 2025, 301, 112520. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Shen, J.; Wang, J.; Luo, Y. Enhanced Tribological Performance of UHMWPE Composites Reinforced With Wollastonite: Biocompatibility and Wear Behavior. ASME J. Tribol. 2025, 147, 044001. [Google Scholar] [CrossRef]
- Zhou, X.; Li, B.; Huang, Q.; Huang, J. Effects of graphene oxide and graphene spatial orientation on tribological properties of UHMWPE composites. Wear 2025, 564–565, 205684. [Google Scholar] [CrossRef]
- Li, S.; Tang, L.; Pu, J.; Wang, J.; Fan, C.; Li, Z.; Song, J. Continuous Hyaluronic Acid Supply by a UHMWPE/PEEK Interlocking Scaffold for Metatarsophalangeal Joint Prosthesis Lubricating Applications. ACS Appl. Mater. Interfaces 2025, 17, 11704–11717. [Google Scholar] [CrossRef] [PubMed]
- ISO 3290:2014; Rolling Bearings—Balls—Dimensions and Tolerances. International Organization for Standardization: Geneva, Switzerland, 2014.
- Qu, Z.Y.; Wang, F.; Liu, P.; Yu, Q.L.; Brouwers, H.J.H. Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation. Mater. Struct. 2020, 53, 1–10. [Google Scholar] [CrossRef]
- Shen, H.; Wang, T.; Feng, X.; Zhang, J.; Liu, X.; Tong, L. Improvement of wear resistance of polyarylene ether nitrile composites through synergistic effect of PTFE and ZnO. Polymer 2024, 313, 127739. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, B.; Ye, X.; Yan, H. Fabrication of polytetrafluoroethylene—Reinforced fluorocarbon composite coatings and tribological properties under multi-environment working conditions. Polymers 2024, 16, 3595. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Qi, X.; Fan, B.; Yang, X.; Dong, Y. Experimental investigation on triglycidyl isocyanurate-based tribologically functional composites. Polym. Compos. 2023, 4, 3641–3652. [Google Scholar] [CrossRef]
- Xie, T.; Shi, Y. Effects of LaF3/CeF3 on the friction transfer of PTFE-based composites. Tribol. Int. 2021, 161, 107069. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.; Song, C.; Shen, L.; Chen, P.; Xu, S. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide. Mater. Des. 2018, 148, 167–176. [Google Scholar] [CrossRef]
- Wang, K.; Hou, D.; Wang, J.; Wang, Z.; Tian, B.; Liang, P. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Appl. Surf. Sci. 2018, 450, 57–65. [Google Scholar] [CrossRef]
- Ženíšek, J.; Ondračka, P.; Čechal, J.; Souček, P.; Holec, D.; Vašina, P. W 4f electron binding energies in amorphous W-B-C systems. Appl. Surf. Sci. 2022, 586, 152824. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Zhang, L.; Zhang, J.; Li, N. Preparation and properties analysis of Ni-W/Si3N4 composite coating on 7075 aluminum alloy. Phys. B Condens. Matter 2025, 700, 416929. [Google Scholar] [CrossRef]
- You, Y.-L.; Li, D.-X.; Si, G.-J.; Deng, X. Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite. Wear 2014, 311, 57–64. [Google Scholar] [CrossRef]
- Fu, L.; Fu, B.; Zhou, M.; Du, S.; Zhang, Y.; Shan, Q.; Hua, L.; Ding, Z.; Zhang, G. Study on metal nanoparticles-PDA interface modification and its effect on the tribology behavior of PTFE self-lubricating coating materials. Appl. Surf. Sci. 2025, 693, 162839. [Google Scholar] [CrossRef]
- Li, C.; Lu, G.; Wang, G.; Liu, B.; Xue, T.; Yuan, H.; Nie, J.; Zhu, X. Initiator-Free Photo-Curing 3D-Printable PVA-based Hydrogel with Tunable Mechanical Properties and Cell Compatibility. Macromol. Rapid Commun. 2023, 44, e2300214. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, G.; Kim, D. Effect of Carboxymethyl Cellulose and Polyvinyl Alcohol on the Dispersibility and Chemical Functional Group of Nonwoven Fabrics Composed of Recycled Carbon Fibers. Materials 2024, 17, 4209. [Google Scholar] [CrossRef]
UHMWPE | PVA | PTFE | |
---|---|---|---|
UPP1 | 8 g | 1 g | 1 g |
UPP2 | 10 g | 1 g | 3 g |
UPP3 | 12 g | 1 g | 5 g |
UPP4 | 14 g | 1 g | 8 g |
Load | Velocity | Distance | |
---|---|---|---|
W1 | 2 N | 1 Hz | 200 m |
W2 | 2 N | 2 Hz | |
W3 | 2 N | 4 Hz | |
W4 | 5 N | 1 Hz | |
W5 | 5 N | 2 Hz | |
W6 | 5 N | 4 Hz | |
W7 | 10 N | 1 Hz | |
W8 | 10 N | 2 Hz | |
W9 | 10 N | 4 Hz |
UHMWPE (Prop) | PVA (Prop) | PTFE (Prop) | ΔH/(J/g) | ΔH/(J/g) | XC/% | |
---|---|---|---|---|---|---|
Pure | 1.000 | 0.000 | 0.000 | 293.000 | 195.315 | 66.660 |
UPP1 | 0.800 | 0.100 | 0.100 | 263.400 | 161.731 | 61.401 |
UPP2 | 0.714 | 0.071 | 0.214 | 247.143 | 133.925 | 54.189 |
UPP3 | 0.667 | 0.056 | 0.278 | 238.111 | 105.048 | 44.117 |
UPP4 | 0.609 | 0.043 | 0.348 | 227.478 | 124.849 | 54.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shao, Z.; Shen, K.; Bateer, B.; Ren, F.; Qi, X. Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers 2025, 17, 1664. https://doi.org/10.3390/polym17121664
Wang H, Shao Z, Shen K, Bateer B, Ren F, Qi X. Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers. 2025; 17(12):1664. https://doi.org/10.3390/polym17121664
Chicago/Turabian StyleWang, Hai, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren, and Xiaowen Qi. 2025. "Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism" Polymers 17, no. 12: 1664. https://doi.org/10.3390/polym17121664
APA StyleWang, H., Shao, Z., Shen, K., Bateer, B., Ren, F., & Qi, X. (2025). Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers, 17(12), 1664. https://doi.org/10.3390/polym17121664