water-logo

Journal Browser

Journal Browser

Pollution Process and Microbial Responses in Aquatic Environment

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: 30 August 2026 | Viewed by 3282

Special Issue Editors


E-Mail Website
Guest Editor
National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Interests: environmental health; lake ecology; emerging pollutants; migration and transformation of pollutants; environmental risk assessment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Interests: phosphorus; nitrogen; microbial activity; sediment pollution mechanism; sediment contamination control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nutrients, such as phosphorus and nitrogen, and pollutants, such as heavy mentals, microplastics, antibiotics, and PFASs, are released into the surface aquatic environment from agricultural, industrial, and municipal sources, posing risks to human health. As significant mediums in the aquatic environment, the overlying water, sediment, and organisms play crucial roles in the migration and transformation of these pollutants. The physical and chemical properties, the environmental conditions at the sediment–water interface, and the microbial communities are all important factors influencing the environmental behavior of pollutants. In addition, the migration and transformation process of pollutants in aquatic environment can alter properties of water and sediment as well as interface conditions, thus affecting microbial activities. This Special Issue solicits articles on scientific issues such as the pollution processes and mechanisms in aquatic environment as well as the influence and responses of the microbial communities to the processes. We welcome original research, new methods and protocols, and reviews.

Dr. Fei-Fei Che
Dr. Wei Huang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic environment
  • nutrient
  • heavy mentals
  • antibiotics
  • pfass
  • migration and transformation
  • microbial community
  • influencing mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2209 KB  
Article
Exploration of Phosphorus Release Characteristics in Sediments from the Plains River Network: Vertical Distribution and the Response of Phosphorus and Microorganisms
by Xiaoshuang Dong, Haojie Chen, Yongsheng Chang, Xixi Yang, Haoran Yang and Wei Huang
Water 2025, 17(15), 2196; https://doi.org/10.3390/w17152196 - 23 Jul 2025
Cited by 1 | Viewed by 1092
Abstract
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were [...] Read more.
Plains River networks are important natural ecosystems that play a vital role in storing, draining, conserving, and purifying water. This study selected the river network in the northern plain of Jiaxing as the research area. Samples were collected in October 2023. Sediments were collected using a sampler and divided into five layers according to the collection depth, namely the surface layer (5 cm), the second layer (15 cm), the third layer (25 cm), the fourth layer (35 cm), and the bottom layer (45 cm). This study analyzed the vertical distribution of each form of phosphorus, the vertical distribution of the microbial community, and the response between the two in the sediments of this plain river network. The results showed high sediment TP concentrations (633.9–2534.7 mg/kg) in this plain river network. The vertical distribution trend of Fe-P was almost the same as that of TP and had the highest concentration (134.9–1860.1 mg/kg). Ca-P is the second highest phosphorus content, which is also an inert phosphorus component, as well as Al-P, and both exhibit a relatively low percentage of surface layers. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria showed heterogeneity in the vertical distribution of sediments. The river network sediments in the Plains River have a high potential for phosphorus release, with most sites acting as phosphorus “sources”. The sediments in the second of these layers show a strong tendency to release phosphorus. Bottom sediments have a low capacity to both adsorb and release phosphorus. The findings of this study will provide a theoretical foundation for the prevention and management of river networks in this plain. Full article
(This article belongs to the Special Issue Pollution Process and Microbial Responses in Aquatic Environment)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 5508 KB  
Review
From Sources to Environmental Risks: Research Progress on Per- and Polyfluoroalkyl Substances (PFASs) in River and Lake Environments
by Zhanqi Zhou, Fuwen Deng, Jiayang Nie, He Li, Xia Jiang, Shuhang Wang and Yunyan Guo
Water 2025, 17(21), 3061; https://doi.org/10.3390/w17213061 - 25 Oct 2025
Viewed by 1668
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted global attention due to their persistence and biological toxicity, becoming critical emerging contaminants in river and lake environments worldwide. Building upon existing studies, this work aims to comprehensively understand the pollution patterns, environmental behaviors, and potential [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have attracted global attention due to their persistence and biological toxicity, becoming critical emerging contaminants in river and lake environments worldwide. Building upon existing studies, this work aims to comprehensively understand the pollution patterns, environmental behaviors, and potential risks of PFASs in freshwater systems, thereby providing scientific evidence and technical support for precise pollution control, risk prevention, and the protection of aquatic ecosystems and human health. Based on publications from 2002 to 2025 indexed in the Web of Science (WoS), bibliometric analysis was used to explore the temporal evolution and research hotspots of PFASs, and to systematically review their input pathways, pollution characteristics, environmental behaviors, influencing factors, and ecological and health risks in river and lake environments. Results show that PFAS inputs originate from both direct and indirect pathways. Direct emissions mainly stem from industrial production, consumer product use, and waste disposal, while indirect emissions arise from precursor transformation, secondary releases from wastewater treatment plants (WWTPs), and long-range atmospheric transport (LRAT). Affected by source distribution, physicochemical properties, and environmental conditions, PFASs display pronounced spatial variability among environmental media. Their partitioning, degradation, and migration are jointly controlled by molecular properties, aquatic physicochemical conditions, and interactions with dissolved organic matter (DOM). Current risk assessments indicate that PFASs generally pose low risks in non-industrial areas, yet elevated ecological and health risks persist in industrial clusters and regions with intensive aqueous film-forming foam (AFFF) use. Quantitative evaluation of mixture toxicity and chronic low-dose exposure risks remains insufficient and warrants further investigation. This study reveals the complex, dynamic environmental behaviors of PFASs in river and lake systems. Considering the interactions between PFASs and coexisting components, future research should emphasize mechanisms, key influencing factors, and synergistic control strategies under multi-media co-pollution. Developing quantitative risk assessment frameworks capable of characterizing integrated mixture toxicity will provide a scientific basis for the precise identification and effective management of PFAS pollution in aquatic environments. Full article
(This article belongs to the Special Issue Pollution Process and Microbial Responses in Aquatic Environment)
Show Figures

Figure 1

Back to TopTop