Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,780)

Search Parameters:
Keywords = RNA Sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3720 KiB  
Article
High-Throughput Sequencing Reveals the Mycoviral Diversity of the Pathogenic Grape Fungus Penicillium astrolabium During Postharvest
by Rui Wang, Guoqin Wen, Xiaohong Liu, Yingqing Luo, Yanhua Chang, Guoqi Li and Tingfu Zhang
Viruses 2025, 17(8), 1053; https://doi.org/10.3390/v17081053 - 28 Jul 2025
Abstract
Penicillium astrolabium is a primary pathogenic fungus that causes grape blue mold during postharvest, leading to substantial losses in the grape industry. Nevertheless, hypovirulence-associated mycoviruses can attenuate the virulence of postharvest grape-rot pathogens, thereby offering a promising biocontrol tool. Characterizing the mycovirus repertoire [...] Read more.
Penicillium astrolabium is a primary pathogenic fungus that causes grape blue mold during postharvest, leading to substantial losses in the grape industry. Nevertheless, hypovirulence-associated mycoviruses can attenuate the virulence of postharvest grape-rot pathogens, thereby offering a promising biocontrol tool. Characterizing the mycovirus repertoire of P. astrolabium is imperative for grape protection, yet remains largely unexplored. Here, we screened six strains harboring viruses in 13 P. astrolabium isolates from rotted grapes. Using high-throughput sequencing, four novel dsRNA viruses and two +ssRNA viruses were identified from the six P. astrolabium strains. The dsRNA viruses belonged to two families—Chrysoviridae and Partitiviridae—and were designated to Penicillium astrolabium chrysovirus 1 (PaCV1), Penicillum astrolabium partitivirus 1′ (PaPV1′), Penicillum astrolabium partitivirus 2 (PaPV2), and Penicillum astrolabium partitivirus 3 (PaPV3). For the +ssRNA viruses, one was clustered into the Alphaflexiviridae family, while the other one was clustered into the Narnaviridae family. The two +ssRNA viruses were named Penicillium astrolabium alphaflexivirus 1 (PaAFV1) and Penicillium astrolabium narnavirus 1 (PaNV1), respectively. Moreover, several viral genomic contigs with non-overlapping and discontinuous sequences were identified in this study, which were probably representatives of five viruses from four families, including Discoviridae, Peribunyaviridae, Botourmiaviridae, and Picobirnaviridae. Taken together, our findings could expand the diversity of mycoviruses, advance the understanding of mycovirus evolution in P. astrolabium, and provide both potential biocontrol resources and a research system for dissecting virus–fungus–plant interactions. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

12 pages, 2743 KiB  
Article
The Causal Role of the Gut Microbiota–Plasma Metabolome Axis in Myeloproliferative Neoplasm Pathogenesis: A Mendelian Randomization and Mediation Analysis
by Hao Kan, Ka Zhang, Aiqin Mao and Li Geng
Metabolites 2025, 15(8), 501; https://doi.org/10.3390/metabo15080501 - 28 Jul 2025
Abstract
Background: Myeloproliferative neoplasms (MPN), a group of chronic hematologic neoplasms, are driven by inflammatory mechanisms that influence disease initiation and progression. Emerging evidence highlights the gut microbiome and plasma metabolome as pivotal immunomodulators, yet their causal roles in MPN pathogenesis remain uncharacterized. Methods: [...] Read more.
Background: Myeloproliferative neoplasms (MPN), a group of chronic hematologic neoplasms, are driven by inflammatory mechanisms that influence disease initiation and progression. Emerging evidence highlights the gut microbiome and plasma metabolome as pivotal immunomodulators, yet their causal roles in MPN pathogenesis remain uncharacterized. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to systematically evaluate causal relationships between 196 gut microbial taxa, 526 plasma metabolites, and MPN risk. Instrumental variables were derived from genome-wide association studies (GWASs) of microbial/metabolite traits. Validation utilized 16S rRNA sequencing data from NCBI Bioproject PRJNA376506. Mediation and multivariable MR analyses elucidated metabolite-mediated pathways linking microbial taxa to MPN. Results: Our MR analysis revealed that 7 intestinal taxa and 17 plasma metabolites are causally linked to MPN. External validation confirmed the three taxa’s differential abundance in MPN cohorts. Mediation analysis revealed two mediated relationships, of which succinylcarnitine mediated 14.5% of the effect, and lysine 27.9%, linking the Eubacterium xylanophilum group to MPN. Multivariate MR analysis showed that both succinylcarnitine (p = 0.004) and lysine (p = 0.040) had a significant causal effect on MPN. Conclusions: This study identifies novel gut microbiota–metabolite axes driving MPN pathogenesis through immunometabolic mechanisms. The validated biomarkers provide potential therapeutic targets for modulating inflammation in myeloproliferative disorders. Full article
(This article belongs to the Special Issue Metabolomics in Personalized Medicine)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Adjuvanted Protein Vaccines Boost RNA-Based Vaccines for Broader and More Potent Immune Responses
by Jiho Kim, Jenn Davis, Bryan Berube, Malcolm Duthie, Sean A. Gray and Darrick Carter
Vaccines 2025, 13(8), 797; https://doi.org/10.3390/vaccines13080797 - 28 Jul 2025
Abstract
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent [...] Read more.
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent boosters with manufactured spike sequences that often lagged behind the circulating strains. In order to enhance the breadth, durability, and magnitude of immune responses, we studied the effect of combining priming with an RNA vaccine technology with boosting with protein/adjuvant using a TLR4-agonist based adjuvant. Methods: Specifically, four proprietary adjuvants (EmT4TM, LiT4QTM, MiT4TM, and AlT4TM) were investigated in combination with multiple modes of SARS-CoV-2 vaccination (protein, peptide, RNA) for their effectiveness in boosting antibody responses to SARS-CoV-2 spike protein in murine models. Results: Results showed significant improvement in immune response strength and breadth—especially against more distant SARS-CoV-2 variants such as Omicron—when adjuvants were used in combination with boosters following an RNA vaccine prime. Conclusions: The use of novel TLR4 adjuvants in combination with protein or RNA vaccinations presents a promising strategy for improving the efficacy of vaccines in the event of future pandemics, by leveraging rapid response using an RNA vaccine prime and following up with protein/adjuvant-based vaccines to enhance the breadth of immunity. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

17 pages, 3410 KiB  
Article
Squama Manitis Extract Exhibits Broad-Spectrum Antibacterial Activity Through Energy and DNA Disruption Mechanisms
by Li Chen, Kunping Song, Mengwei Cheng, Aloysius Wong, Xuechen Tian, Yixin Yang, Mia Yang Ang, Geok Yuan Annie Tan and Siew Woh Choo
Biology 2025, 14(8), 949; https://doi.org/10.3390/biology14080949 - 28 Jul 2025
Abstract
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against [...] Read more.
The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)—a traditional Chinese medicine component—exhibits broad-spectrum bactericidal activity against clinically significant pathogens, including both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) species (MIC = 31.25 mg/mL), achieving significant reduction in bacterial viability within 24 h. Through integrated multi-omics analysis combining scanning electron microscopy and RNA sequencing, we reveal SME’s unprecedented tripartite mechanism of action: (1) direct membrane disruption causing cell envelope collapse, (2) metabolic paralysis through coordinated suppression of TCA cycle and fatty acid degradation pathways, and (3) inhibition of DNA repair systems (SOS response and recombination downregulation). Despite its potent activity, SME shows low cytotoxicity toward mammalian cells (>90% viability) and can penetrate Gram-negative outer membranes. These features highlight SME’s potential to address drug-resistant infections through synthetic lethality across stress response, energy metabolism, and DNA integrity pathways. While advocating for synthetic alternatives to endangered animal products, this study establishes SME as a polypharmacological template for resistance-resilient antimicrobial design, demonstrating how traditional knowledge and modern systems biology can converge to guide sustainable anti-infective development. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

23 pages, 4653 KiB  
Article
Zinc-Induced Folding and Solution Structure of the Eponymous Novel Zinc Finger from the ZC4H2 Protein
by Rilee E. Harris, Antonio J. Rua and Andrei T. Alexandrescu
Biomolecules 2025, 15(8), 1091; https://doi.org/10.3390/biom15081091 - 28 Jul 2025
Abstract
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein [...] Read more.
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein obtains its name. Alpha Fold 3 confidently predicts a structure for the zinc finger but also for similarly sized random sequences, providing equivocal information on its folding status. We show using synthetic peptide fragments that the zinc finger of ZC4H2 is genuine and folds upon binding a zinc ion with picomolar affinity. NMR pH titration of histidines and UV–Vis of a cobalt complex of the peptide indicate its four cysteines coordinate zinc, while two histidines do not participate in binding. The experimental NMR structure of the zinc finger has a novel structural motif similar to RANBP2 zinc fingers, in which two orthogonal hairpins each contribute two cysteines to coordinate zinc. Most of the nine ZARD mutations that occur in the ZC4H2 zinc finger are likely to perturb this structure. While the ZC4H2 zinc finger shares the folding motif and cysteine-ligand spacing of the RANBP2 family, it is missing key substrate-binding residues. Unlike the NZF branch of the RANBP2 family, the ZC4H2 zinc finger does not bind ubiquitin. Since the ZC4H2 zinc finger occurs in a single copy, it is also unlikely to bind DNA. Based on sequence homology to the VAB-23 protein, the ZC4H2 zinc finger may bind RNA of a currently undetermined sequence or have alternative functions. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions (3rd Edition))
Show Figures

Figure 1

20 pages, 2337 KiB  
Article
Acquired Radioresistance Through Adaptive Evolution with Gamma Radiation as Selection Pressure: Increased Expression and Induction of Anti-Stress Genes
by Takeshi Saito and Hiroaki Terato
Int. J. Mol. Sci. 2025, 26(15), 7275; https://doi.org/10.3390/ijms26157275 - 28 Jul 2025
Abstract
Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics [...] Read more.
Elucidating the mechanisms of radioresistance in highly radiotolerant organisms can provide valuable insights into the adaptation and evolution of organisms. However, research has been limited on many naturally occurring radioresistant organisms due to a lack of information regarding their genetic and biochemical characteristics and the difficulty of handling them experimentally. To address this, we conducted an experiment on adaptive evolution using gamma radiation as the selection pressure to generate evolved Escherichia coli with gamma radiation resistance approximately one order of magnitude greater than that of wild-type E. coli. Gene expressions in all wild-type and evolved radioresistant E. coli in the presence or absence of gamma irradiation were analyzed and compared using RNA sequencing. Under steady-state conditions, the genes involved in survival, cell recovery, DNA repair, and response following stress exposure were upregulated in evolved E. coli compared with those in wild-type E. coli. Furthermore, the evolved E. coli induced these genes more efficiently following gamma irradiation and greater DNA repair activity than that in the wild-type E. coli. Our results indicate that an increased steady-state expression of various anti-stress genes, including DNA repair-related genes, and their highly efficient induction under irradiation are responsible for the remarkable radioresistance of evolved E. coli. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 336 KiB  
Brief Report
Molecular Detection of Mutations in the penA and 23S rRNA Genes of Neisseria gonorrhoeae Related to Decreased Cephalosporin and Azithromycin Susceptibility in Rectal Specimens from Men Who Have Sex with Men (MSM) in Lima, Peru
by Francesca Vasquez, Maria Eguiluz, Silver K. Vargas, Jazmin Qquellon, Carlos F. Caceres, Jeffrey D. Klausner and Kelika A. Konda
Trop. Med. Infect. Dis. 2025, 10(8), 211; https://doi.org/10.3390/tropicalmed10080211 - 28 Jul 2025
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, represents a major public health concern due to its increasing antimicrobial resistance. While often asymptomatic—particularly in extragenital infections—untreated cases can lead to severe complications and further transmission. Despite global efforts to monitor antimicrobial resistance, data [...] Read more.
Neisseria gonorrhoeae, the causative agent of gonorrhea, represents a major public health concern due to its increasing antimicrobial resistance. While often asymptomatic—particularly in extragenital infections—untreated cases can lead to severe complications and further transmission. Despite global efforts to monitor antimicrobial resistance, data on the molecular determinants underlying decreased susceptibility in N. gonorrhoeae remain scarce in Peru. This study aimed to detect mutations in the penA and 23S rRNA genes, which confer decreased susceptibility to cephalosporins and azithromycin resistance. We extracted DNA from 124 N. gonorrhoeae-positive clinical rectal specimens collected in Aptima Combo 2 transport tubes from MSM patients. These DNA samples were then screened using the Mismatch Amplification Mutation Assay-based real-time PCR (MAMA-qPCR) to identify mutations in the 23S rRNA and penA genes. Each sample underwent separate reactions to detect A2059G and C2611T mutations in the 23S rRNA gene, and 86 of these samples were further tested in individual qPCR assays for the penA D345 deletion (D345del) or G545S mutations. Sanger sequencing was performed on all DNA samples positive for 23S rRNA mutations by MAMA-qPCR assay, and on 27 DNA samples that yielded sufficient penA amplicons for additional sequencing. Using the MAMA-qPCR assay for the 23S rRNA gene, 64 of 124 samples amplified in the A2059G reaction: 2 (3.1%) carried the mutation, and 62 were classified as wild type. In the C2611T reaction, 42 of 124 samples amplified, and none of them carried the mutation. Using the MAMA-qPCR assay for the penA gene, we only analyzed 86 samples, as the remaining 38 samples had insufficient DNA yield. A total of 44 of the 86 samples amplified in the D345del reaction: 5 (11.4%) carried the D345del, and 39 were classified as wild type. In the G545S reaction, 4 (6.4%) carried the mutation, and 58 were classified as wild type. Finally, sequencing of the penA gene in the 27 samples revealed mutations related to decreased susceptibility to cephalosporins. This study identified genetic mutations conferring resistance to azithromycin and decreased susceptibility to cephalosporins, providing an overview of the circulating mutations conferring resistance in N. gonorrhoeae strains in Peru. Full article
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

16 pages, 5172 KiB  
Article
LAMP1 as a Target for PET Imaging in Adenocarcinoma Xenograft Models
by Bahar Ataeinia, Arvin Haj-Mirzaian, Lital Ben-Naim, Shadi A. Esfahani, Asier Marcos Vidal, Umar Mahmood and Pedram Heidari
Pharmaceuticals 2025, 18(8), 1122; https://doi.org/10.3390/ph18081122 - 27 Jul 2025
Abstract
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy [...] Read more.
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy in mouse models of human breast and colon adenocarcinoma. Methods: To determine the source of LAMP1 expression, we utilized human single-cell RNA sequencing and spatial transcriptomics, complemented by in-house flow cytometry on xenografted mouse models. Tissue microarrays of multiple epithelial cancers and normal tissue were stained for LAMP-1, and staining was quantified. An anti-LAMP1 monoclonal antibody was conjugated with desferrioxamine (DFO) and labeled with zirconium-89 (89Zr). Human triple-negative breast cancer (MDA-MB-231) and colon cancer (Caco-2) cell lines were implanted in nude mice. PET/CT imaging was conducted at 24, 72, and 168 h post-intravenous injection of 89Zr-DFO-anti-LAMP1 and 89Zr-DFO-IgG (negative control), followed by organ-specific biodistribution analyses at the final imaging time point. Results: Integrated single-cell and spatial RNA sequencing demonstrated that LAMP1 expression was localized to myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in addition to the cancer cells. Tissue microarray showed significantly higher staining for LAMP-1 in tumor tissue compared to normal tissue (3986 ± 2635 vs. 1299 ± 1291, p < 0.001). Additionally, xenograft models showed a significantly higher contribution of cancer cells than the immune cells to cell surface LAMP1 expression. In vivo, PET imaging with 89Zr-DFO-anti-LAMP1 PET/CT revealed detectable tumor uptake as early as 24 h post-injection. The 89Zr-DFO-anti-LAMP1 tracer demonstrated significantly higher uptake than the control 89Zr-DFO-IgG in both models across all time points (MDA-MB-231 SUVmax at 168 h: 12.9 ± 5.7 vs. 4.4 ± 2.4, p = 0.003; Caco-2 SUVmax at 168 h: 8.53 ± 3.03 vs. 3.38 ± 1.25, p < 0.01). Conclusions: Imaging of cell surface LAMP-1 in breast and colon adenocarcinoma is feasible by immuno-PET. LAMP-1 imaging can be expanded to adenocarcinomas of other origins, such as prostate and pancreas. Full article
Show Figures

Figure 1

19 pages, 4491 KiB  
Article
Temporal Dynamics of Fecal Microbiome and Short-Chain Fatty Acids in Sows from Early Pregnancy to Weaning
by Sui Liufu, Xin Xu, Qun Lan, Bohe Chen, Kaiming Wang, Lanlin Xiao, Wenwu Chen, Wu Wen, Caihong Liu, Lei Yi, Jingwen Liu, Xianchuang Fu and Haiming Ma
Animals 2025, 15(15), 2209; https://doi.org/10.3390/ani15152209 - 27 Jul 2025
Abstract
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy [...] Read more.
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy to weaning, and to investigate their associations with maternal weight gain during gestation. We systematically collected 100 fecal samples at four time points (day 30 of pregnancy (T1), 1–2 days before delivery (T2), day 10 after delivery (T3), and day 21 of weaning stage (T3)), and measured the body weight of sows at T1 (132 kg ± 10.8) and T2 (205 kg ± 12.1). The primary nutrient components of the diets during the gestation and lactation periods are summarized. All fecal samples were subjected to 16S rRNA gene sequencing. We found that a high proportion of crude fiber (bran) is a key feature of the gestation diet, which may affect enterotype shifts and gut microbial composition. Sows fed a high-fiber diet showed significant enrichment of gut microbiota, including genera such as Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, and Prevotella_9 during the gestational period (LDA score > 2). Moreover, Eubacterium_coprostanoligenes_group (average relative abundance: 5.5%) and Lachnospiraceae_NK4A136_group (average relative abundance: 2.5%) were the dominant bacteria during the lactation stage. Fecal propionate and butyrate levels were lowest in late gestation, and propionate negatively and acetate positively correlated with body weight change (p < 0.05). Additionally, certain Prevotella taxa were associated with arachidonic acid metabolism and acetate production (p < 0.05). Our study identified key microbial communities across four stages from gestation to weaning and revealed that dietary patterns can shape the sow gut microbiota. Furthermore, we observed significant correlations between SCFAs and body weight change during pregnancy. These findings provide a scientific basis and theoretical support for future strategies aimed at modulating gut microbiota and targeting SCFAs to improve maternal health and productivity throughout the gestation-to-weaning period. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 976 KiB  
Article
Characterisation of the Faecal Microbiota in Dogs with Mast Cell Tumours Compared with Healthy Dogs
by Catarina Aluai-Cunha, Diana Oliveira, Hugo Gregório, Gonçalo Petrucci, Alexandra Correia, Cláudia Serra and Andreia Santos
Animals 2025, 15(15), 2208; https://doi.org/10.3390/ani15152208 - 27 Jul 2025
Abstract
Mast cell tumours (MCT) are the most common cutaneous neoplasms in dogs, with variable behaviours and patient survival time. Both indolent and aggressive forms have been described, but much remains to be explored regarding prognosis and therapy. Evidence has highlighted the influence of [...] Read more.
Mast cell tumours (MCT) are the most common cutaneous neoplasms in dogs, with variable behaviours and patient survival time. Both indolent and aggressive forms have been described, but much remains to be explored regarding prognosis and therapy. Evidence has highlighted the influence of microbiota on multiple health and disease processes, including certain types of cancer in humans. However, knowledge remains scarce regarding microbiota biology and its interactions in both humans and canine cancer patients. This study aimed to characterise the faecal microbiota of dogs with MCT and compare it with that of healthy individuals. Twenty-eight dogs diagnosed with MCT and twenty-eight healthy dogs were enrolled in the study. Faecal samples were collected and analysed by Illumina sequencing of 16S rRNA genes. Alpha diversity was significantly lower in dogs with cancer, and the species diversity InvSimpson Indexwas reduced (p = 0.019). Principal coordinate analysis showed significant differences in the bacterial profile of the two groups: there was a significant lower abundance of the genera Alloprevotella, Holdemanella, Erysipelotrichaceae_UCG-003, and Anaerobiospirillum and, conversely, a significant increase in the genera Escherichia-Shigella and Clostridium sensu stricto 1 in diseased dogs. At the phylum level, Bacteroidota was significantly reduced in diseased dogs (25% in controls vs. 19% in MCT dogs). In conclusion, sequencing analysis provided an overview of the bacterial profile and showed statistical differences in the microbial communities of dogs with MCT compared with healthy dogs, suggesting a link between the gut microbiota and MCT in this species. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
by Huihong Huang, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh and Wei Dong
Microorganisms 2025, 13(8), 1753; https://doi.org/10.3390/microorganisms13081753 - 27 Jul 2025
Abstract
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine [...] Read more.
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine and were identified based on 16S rRNA gene sequencing. Adsorption experiments showed that Bacillus sp. DW011 exhibited exceptional Tb(III) adsorption efficiency, with an adsorption rate of 90.45% and adsorption selectivity for heavy rare earth elements. Notably, strain DW011 was also found to be tolerant against Tb(III) with the 24 h 50% lethal concentration (LC50) of 2.62 mM. The biosorption mechanisms of DW011 were investigated using adsorption kinetics, SEM-EDS, and FTIR. The results indicated that the adsorption of strain DW011 conforms to the second-order kinetic model, and the teichoic acid–peptidoglycan network (phosphate-dominated) serves as the primary site for heavy REE adsorption, while carboxyl/amino groups in the biomembrane matrix provide secondary sites for LREEs. This study provides new information that Bacillus strains isolated from ionic rare earth mine deposits have potential as green adsorbents and have high selectivity for the adsorption of heavy REEs, providing a sustainable strategy for REE recovery from wastewaters. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 8040 KiB  
Article
Low BOK Expression Promotes Epithelial–Mesenchymal Transition and Migration via the Wnt Signaling Pathway in Breast Cancer Cells
by Ling Liu, Tiantian He, Zhen Zhang, Wenjie Dai, Liyang Ding, Hong Yang, Bo Xu, Yitong Shang, Yu Deng, Xufeng Fu and Xing Du
Int. J. Mol. Sci. 2025, 26(15), 7252; https://doi.org/10.3390/ijms26157252 - 27 Jul 2025
Abstract
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types [...] Read more.
The B-cell lymphoma 2 (Bcl-2)-related ovarian killer (BOK), a member of the Bcl-2 protein family, shares a similar domain structure and amino acid sequence homology with the pro-apoptotic family members BAX and BAK. Although BOK is involved in the development of various types of cancer, its mechanism of action in breast cancer remains unclear. This study found that BOK was involved in the process of MG132, inhibiting the migration and epithelial–mesenchymal transition (EMT) of breast cancer cells induced by transforming growth factor-β. Furthermore, interfering BOK reversed the inhibition of breast cancer cell migration and the EMT process by MG132. Additional studies revealed that BOK silencing promoted the expression of EMT-related markers in breast cancer cells, while BOK overexpression inhibited EMT and migration. Using RNA-seq sequencing and Western blotting, we confirmed that the Wnt signaling pathway is involved in BOK regulating the EMT process in breast cancer cells. Therefore, we conclude that low BOK expression promotes breast cancer EMT and migration by activating the Wnt signaling pathway. This study enhances our understanding of breast cancer pathogenesis and suggests that BOK may serve as a potential prognostic marker and therapeutic target for breast cancer. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 (registering DOI) - 26 Jul 2025
Viewed by 51
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 5034 KiB  
Article
The Activation of the Microglial NLRP3 Inflammasome Is Involved in Tuberous Sclerosis Complex-Related Neuroinflammation
by Ran Ding, Shengxuan Zhang, Linxue Meng, Lingman Wang, Ziyao Han, Jianxiong Gui, Jiaxin Yang, Li Cheng, Lingling Xie and Li Jiang
Int. J. Mol. Sci. 2025, 26(15), 7244; https://doi.org/10.3390/ijms26157244 - 26 Jul 2025
Viewed by 63
Abstract
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of [...] Read more.
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of TSC, and neuroinflammation is thought to play an important role. Glial cells are a major source of neuroinflammation, but whether microglia are involved in the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the expression of interleukin-1β (IL-1β) in TSC patients remains unclear. We used a transcriptome sequencing dataset for bioinformatics analysis to explore the differences in the expression of microglial inflammasome-associated hub genes. TSC2 knockdown (TSC2 KD) microglia (HMC3 cell line) were generated by lentivirus, and the expression of inflammasome-associated hub genes, microglial activation, and NLRP3 inflammasome activation were verified. In addition, experiments were performed to explore the regulatory effects of rapamycin. Bioinformatics analysis identified a total of eight inflammasome-associated hub genes. By detecting GFP fluorescence, TSC2 mRNA, TSC2 protein expression, and the phosphorylation of the mammalian target of rapamycin (p-mTOR)/mTOR, we confirmed that the TSC2 KD microglia model was successfully established. Compared with the control group, the TSC2 KD group presented higher mRNA levels and fluorescence intensities of microglia AIF1 and CD68, as well as greater reactive oxygen species (ROS) production. Eight inflammasome-associated hub gene mRNA assays revealed that the expression of the NLRP3 and IL1B genes was increased. Compared with the control group, the TSC2 KD group presented increased levels of NLRP3 and Pro-IL-1β proteins in cells and Cleaved-Caspase 1 and Cleaved-IL-1β proteins in the supernatant, suggesting NLRP3 inflammasome activation. Rapamycin intervention alleviated these changes, demonstrating that the TSC2 gene regulation of microglial activation and NLRP3 inflammasome activation are correlated with mTOR phosphorylation. In conclusion, microglia are activated in TSC patients and participate in the NLRP3 inflammasome-associated neuroinflammatory response, and rapamycin treatment can alleviate these changes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop