Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (718)

Search Parameters:
Keywords = RC beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 (registering DOI) - 31 Jul 2025
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

19 pages, 2595 KiB  
Article
Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering
by Alessandra Fiore, Sebastiano Marasco and Rita Greco
Appl. Sci. 2025, 15(15), 8432; https://doi.org/10.3390/app15158432 - 29 Jul 2025
Viewed by 170
Abstract
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression [...] Read more.
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression strategies. However, the difficulties and uncertainties inherent in the method have pointed out how the implementation of proper computational methods together with the use of recent and qualified databases of experimental data are essential to carry out reliable formulations. In this framework, this paper explores a new robust EPR approach able to remove potential outliers and leverage points often occurring in biased dataset and simultaneously accounting for the effects of probabilistic uncertainties. Uncertainties are incorporated in the EPR methodology by adopting the direct perturbation method. In particular, it is shown the importance to set the parameters representative of experimental and analytical dispersions on the basis of the characteristics of the database in terms of homogeneity. With this purpose, two different case-studies are analyzed, dealing with the shear capacity of RC beams without stirrups and the compressive strength of cement-based mortar specimens, respectively. Finally, the best capacity equations are selected and discussed. Full article
Show Figures

Figure 1

23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 200
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

23 pages, 4918 KiB  
Article
Meso-Scale Numerical Analysis of the Torsional Size Effect of RC Beams Reinforced with CFRP Sheets Under Combined Bending and Torsion
by Dong Li, Minghai Wang, Yishuai He, Jiangxing Zhang, Liu Jin and Xiuli Du
Buildings 2025, 15(15), 2641; https://doi.org/10.3390/buildings15152641 - 26 Jul 2025
Viewed by 180
Abstract
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms [...] Read more.
In practical engineering, buildings are predominantly subjected to combined forces, and reinforced concrete (RC) beams serve as the primary load-bearing components of buildings. However, there is a paucity of research on the torsional effects of RC beams, particularly concerning the torsional failure mechanisms of large-size beams. To address this gap, this paper establishes a meso-scale numerical analysis model for RC beams reinforced with Carbon Fiber Reinforced Polymer (CFRP) sheets under combined bending and torsion pressures. The research analyzes how the fiber ratio and torsion-bending ratio govern torsion-induced failure characteristics and size effects in CFRP-strengthened RC beams. The results indicate that an increase in the fiber ratio leads to accumulated damage distribution in the RC beam, a gradual decrease in CFRP sheet strain, and an increase in peak load and peak torque, albeit with diminishing amplitudes; as the torsion-bending ratio increases, crack distribution becomes more concentrated, the angle between cracks and the horizontal direction decreases, overall peak load decreases, peak torque increases, and CFRP sheet strain increases; and the nominal torsional capacity of CFRP-strengthened RC beams declines with increasing size, exhibiting a reduction of 24.1% to 35.6%, which distinctly demonstrates the torsional size effect under bending–torsion coupling conditions. A modified Torque Size Effect Law is formulated, characterizing in quantitative terms the dependence of the fiber ratio and the torsion-bending ratio. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 192
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4549 KiB  
Article
Failure Mode Discrimination and Stochastic Behavior Study of RC Beams Under Impact Loads
by Taochun Yang, Yating Jiang, Xiaoyan Zhang, Qinghai Liu and Yin Wang
Modelling 2025, 6(3), 70; https://doi.org/10.3390/modelling6030070 - 22 Jul 2025
Viewed by 197
Abstract
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized [...] Read more.
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized drop hammer impact tests, ABAQUS2022 software, and theoretical methods. The study examined three typical failure modes of RC beams under impact loads: flexural failure, flexural-shear failure, and shear failure. A discrimination criterion based on the flexural-shear capacity–effect curve was developed. Utilizing this criterion, along with the basic principles of structural reliability theory, the failure probability of RC beams under impact loads was calculated and analyzed using the Monte Carlo method. The results indicate that the criterion based on the flexural-shear capacity–effect curve can be used for discriminating failure modes of RC beams under impact loads. The impact velocity and stirrup ratio were identified as crucial factors that influenced the failure modes of RC beams under impact. Specifically, an increase in the stirrup spacing reduced the reliability of the RC beams under impact, while an increase in the stirrup ratio could significantly enhance their impact resistance. Furthermore, with a constant impact energy, an increase in beam span correlated with the improved reliability of RC beams under impact, where larger spans yielded a better impact resistance. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Graphical abstract

25 pages, 5596 KiB  
Article
Impact of Reinforcement Corrosion on Progressive Collapse Behavior of Multi-Story RC Frames
by Luchuan Ding, Xiaodi Dai, Yiping Gan and Yihua Zeng
Buildings 2025, 15(14), 2534; https://doi.org/10.3390/buildings15142534 - 18 Jul 2025
Viewed by 181
Abstract
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any [...] Read more.
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any point during a structure’s service life and at various locations within the structural system, this study examines the progressive collapse behavior of deteriorated RC frames subjected to simulated reinforcement corrosion. This paper presents an investigation into the system-level progressive collapse responses of deteriorated RC frames, which extends the current state of the art in this field. The influence of different material deteriorations, different corrosion locations, different column removal scenarios, and dynamic effects on structural response is explored. According to the results obtained in this research, a significant reduction in progressive collapse resistance can be resulted in with increasing corrosion levels. Notably, only reinforcement corrosion in the beams located directly above the removed column (i.e., within the directly affected part) for the investigated RC frame had a substantial impact on structural performance. In contrast, corrosion in other regions and concrete deterioration exhibited minimal influence in this work. An increased number of corroded floors further reduced collapse resistance. Dynamic progressive collapse resistance was found to be considerably lower than its static counterpart and decreased at a slightly faster rate as corrosion progressed. Additionally, the energy-based method was shown to provide a reasonable approximation of the maximum dynamic responses at different corrosion levels, offering a computationally efficient alternative to full dynamic analysis. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 5062 KiB  
Review
State-of-the-Art Review of Studies on the Flexural Behavior and Design of FRP-Reinforced Concrete Beams
by Hau Tran, Trung Nguyen-Thoi and Huu-Ba Dinh
Materials 2025, 18(14), 3295; https://doi.org/10.3390/ma18143295 - 12 Jul 2025
Viewed by 491
Abstract
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused [...] Read more.
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused on the behavior of FRP RC beams. In this paper, a comprehensive overview of previous studies is conducted to provide a thorough understanding about the behavior, the design, and the limitations of FRP RC beams. Particularly, experimental studies on FRP RC beams are collected and reviewed. In addition, the numerical analysis of FRP beams including the finite element (FE) analysis, the discrete element (DE) analysis, and artificial intelligence/machine learning (AI/ML) is summarized. Moreover, the international standards for the design of FRP RC beams are presented and evaluated. Through the review of previous studies, 93 tested specimens are collected. They can be a great source of reference for other studies. In addition, it has been found that the studies on the continuous beams and deep beams reinforced with FRP bars are still limited. In addition, more studies using DE analysis and AI/ML to analyze the response of FRP RC beams under loading conditions should be conducted. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 16393 KiB  
Article
Near-Surface-Mounted CFRP Ropes as External Shear Reinforcement for the Rehabilitation of Substandard RC Joints
by George Kalogeropoulos, Georgia Nikolopoulou, Evangelia-Tsampika Gianniki, Avraam Konstantinidis and Chris Karayannis
Buildings 2025, 15(14), 2409; https://doi.org/10.3390/buildings15142409 - 9 Jul 2025
Viewed by 332
Abstract
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, [...] Read more.
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, exhibited shear failure of the joint region and was used as the control specimen. The other specimens were retrofitted and subsequently subjected to the same history of incremental lateral displacement amplitudes with the control subassemblage. The retrofitting was characterized by low labor demands and included wrapping of NSM CFPR-ropes in the two diagonal directions on both lateral sides of the joint as shear reinforcement. Single or double wrapping of the joint was performed, while weights were suspended to prevent the loose placement of the ropes in the grooves. A significant improvement in the seismic performance of the retrofitted specimens was observed with respect to the control specimen, regarding strength and ductility. The proposed innovative scheme effectively prevented shear failure of the joint by shifting the damage in the beam, and the retrofitted specimens showed a more dissipating hysteresis behavior without significant loss of lateral strength and axial load-bearing capacity. The cumulative energy dissipation capacity of the strengthened specimens increased by 105.38% and 122.23% with respect to the control specimen. Full article
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Performance of Hybrid Strengthening System for Reinforced Concrete Member Using CFRP Composites Inside and over Transverse Groove Technique
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
Fibers 2025, 13(7), 93; https://doi.org/10.3390/fib13070093 - 8 Jul 2025
Viewed by 261
Abstract
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such [...] Read more.
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such as Externally Bonded Reinforcement Over Grooves (EBROG) and Externally Bonded Reinforcement Inside Grooves (EBRIG), were developed to enhance the bond strength and delay delamination. While most research has examined longitudinal groove layouts, this study investigates a hybrid system combining a CFRP fabric bonded inside transverse grooves (EBRITG) with externally bonded layers over the grooves (EBROTG). The system leverages the grooves’ surface area to anchor the CFRP and improve the bonding strength. Seven RC beams were tested in two stages: five beams with varied strengthening methods (EBROG, EBRIG, and hybrid) in the first stage and two beams with a hybrid system and concrete cover anchorage in the second stage. Results demonstrated significant flexural capacity improvement—57% and 72.5% increase with two and three CFRP layers, respectively—compared to the EBROG method, confirming the hybrid system’s superior bonding efficiency. Full article
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 239
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

22 pages, 6320 KiB  
Article
Investigation on Shear Behavior of Precast Monolithic ECC Composite Beams
by Tingting Lu, Yuxiang Wen and Bin Wang
Materials 2025, 18(13), 3081; https://doi.org/10.3390/ma18133081 - 29 Jun 2025
Viewed by 326
Abstract
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) [...] Read more.
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) composite beam were designed and fabricated for the experimental study. The failure pattern, failure mechanism, load-bearing capacity, deformability, and stiffness degradation were quantitatively analyzed through the tests. The main findings were as follows: ECC composite beams developed finer and more densely distributed cracks compared to RC composite beams, without significant concrete spalling. The peak load of ECC composite beams was 8.2% higher than that of RC composite beams, while the corresponding displacement at peak load increased by 29.3%. The ECC precast shell delayed crack propagation through the fiber bridging effect. The average load degradation coefficient of the ECC composite beams was 8.2% lower than that of the RC beam. The stiffness degradation curve of ECC composite beams was more gradual than that of RC composite beams, providing an optimization basis for the design of precast beams in structures with high seismic demands. As the shear span ratio increased from 1.5 to 3, the load-bearing capacity decreased by 32.0%. When the stirrup ratio increased from 0.25% to 0.75%, the ultimate load-bearing capacity improved by 28.8%. Furthermore, specimens with higher stirrup ratios showed a 40–50% reduction in stiffness degradation rate, demonstrating that increased stirrup ratio effectively mitigated brittle failure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3656 KiB  
Article
Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
by Konstantinos I. Christidis
CivilEng 2025, 6(3), 34; https://doi.org/10.3390/civileng6030034 - 28 Jun 2025
Viewed by 284
Abstract
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear [...] Read more.
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear walls. The model is applicable to medium-rise walls designed with or without modern seismic provisions and incorporates shear effects in both deformation and strength capacity. The application of the Proposed Model is assessed through comparison with numerical models implemented in the widely accepted OpenSees platform. Specifically, two types of elements are examined: the widely used flexural element Force-Based Beam-Column Element (FBE) and the Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI), which accounts for the interaction between flexure and shear. The results of both analytical and numerical approaches are compared with experimental data from four RC shear wall specimens reported in previous studies. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

28 pages, 10940 KiB  
Article
Torsional Strengthening of RC Beams with Openings Using Hybrid SHCC–Glass Fiber Mesh Composites
by Ahmed Hamoda, Saad A. Yehia, Mizan Ahmed, Aref A. Abadel, Khaled Sennah, Vipulkumar Ishvarbhai Patel and Hussam Alghamdi
Buildings 2025, 15(13), 2237; https://doi.org/10.3390/buildings15132237 - 26 Jun 2025
Viewed by 392
Abstract
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and [...] Read more.
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and six strengthened beams with varying configurations of horizontal, vertical, and combined SHCC-GF mesh retrofitting. The experimental program evaluated the influence of single- and double-layer GF mesh reinforcement on torsional capacity, crack propagation, stiffness, and energy absorption. The results demonstrated that the presence of an opening reduced the ultimate torsional capacity by 29%, elastic stiffness by 48%, and energy absorption by 64% compared to the solid control beam. Strengthening with horizontal SHCC strips restored 21–35% of the lost capacity, while vertical strips performed even better, achieving 44–61% improvement. The combined horizontal–vertical configuration with a double-layer GF mesh proved the most effective, increasing ultimate load by 91% compared to the unstrengthened beam with an opening. Finite element models (FEM) are developed using ABAQUS to simulate the performance of the tested beams. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

Back to TopTop