Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering
Abstract
1. Introduction
2. Overview of the EPR Technique
3. Direct Perturbation Method
4. Combination of Objective Functions
5. Case Studies
5.1. Problem Description 1
5.2. Problem Description 2
5.3. Robust EPR Settings
6. Results
6.1. Problem 1
6.2. Problem 2
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2013, 26, 97–107. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: Delhi, India, 2009. [Google Scholar]
- Smits, G.F.; Kotanchek, M. Pareto-front exploitation in symbolic regression. In Genetic Programming Theory and Practice II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 283–299. [Google Scholar]
- Box, G.E.; Tiao, G.C. A further look at robustness via Bayes’s theorem. Biometrika 1962, 49, 419–432. [Google Scholar] [CrossRef]
- Fonseca, T.C.; Ferreira, M.A.; Migon, H.S. Objective Bayesian analysis for the Student-t regression model. Biometrika 2008, 95, 325–333. [Google Scholar] [CrossRef]
- Jacquier, E.; Polson, N.G.; Rossi, P.E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 2004, 122, 185–212. [Google Scholar] [CrossRef]
- Fiore, A.; Berardi, L.; Marano, G.C. Predicting torsional strength of RC beams by using evolutionary polynomial regression. Adv. Eng. Softw. 2012, 47, 178–187. [Google Scholar] [CrossRef]
- Giustolisi, O.; Simeone, V. Optimal design of artificial neural networks by a multi-objective strategy: Groundwater level predictions. Hydrol. Sci. J. 2006, 51, 502–523. [Google Scholar] [CrossRef]
- Marano, G.C.; Quaranta, G.; Greco, R. Multi-objective optimization by genetic algorithm of structural systems subject to random vibrations. Struct. Multidiscip. Optim. 2009, 39, 385–399. [Google Scholar] [CrossRef]
- Ahangar-Asr, A.; Faramarzi, A.; Mottaghifard, N.; Javadi, A.A. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput. Geosci. 2011, 37, 1860–1869. [Google Scholar] [CrossRef]
- Altomare, C.; Laucelli, D.B.; Mase, H.; Gironella, X. Determination of Semi-Empirical Models for Mean Wave Overtopping Using an Evolutionary Polynomial Paradigm. J. Mar. Sci. Eng. 2020, 8, 570. [Google Scholar] [CrossRef]
- Marasco, S.; Cimellaro, G.P. A new evolutionary polynomial regression technique to assess the fundamental periods of irregular buildings. Earthq. Eng. Struct. Dyn. 2021, 50, 2195–2211. [Google Scholar] [CrossRef]
- Marasco, S.; Fiore, A.; Greco, R.; Cimellaro, G.P.; Marano, G.C. Evolutionary Polynomial Regression Algorithm Enhanced with a Robust Formulation: Application to shear strength prediction of rc beams without stirrups. J. Comput. Civ. Eng. 2021, 35, 04021017. [Google Scholar] [CrossRef]
- Hutcheson, G.D. Ordinary least-squares regression. In The SAGE Dictionary of Quantitative Management Research; Moutinho, L., Hutcheson, G.D., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2011; pp. 224–228. [Google Scholar] [CrossRef]
- Lange, K.L.; Little, R.J.; Taylor, J.M. Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 1989, 84, 881–896. [Google Scholar] [CrossRef]
- Li, G. Robust regression. In Vol. 281 of Exploring Data Tables, Trends, and Shapes; U340; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Fox, J.; Monette, G. An R and S-Plus Companion to Applied Regression; SAGE: Los Angeles, CA, USA, 2002. [Google Scholar]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Andersen, R. Modern Methods for Robust Regression; SAGE: Los Angeles, CA, USA, 2008. [Google Scholar]
- Mohsenijam, A.; Siu, M.-F.; Lu, M. Modified stepwise regression approach to streamlining predictive analytics for construction engineering applications. J. Comput. Civ. Eng. 2017, 31, 04016066. [Google Scholar] [CrossRef]
- Ding, X.H.; Luo, B.; Zhou, H.T.; Chen, Y.H. Generalized solutions for advection–dispersion transport equations subject to time-and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Yin, Q.; Xin, T.; Zhenggang, H.; Minghua, H. Measurement and analysis of deformation of underlying tunnel induced by foundation pit excavation. Adv. Civ. Eng. 2023, 2023, 8897139. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, W.; Su, Y.; Jia, F.; Long, X. Plastic damage prediction of concrete under compression based on deep learning. Acta Mech. 2024, 235, 255–266. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, X.; Huang, B.; Wu, Z.; Chen, H. Static homotopy response analysis of structure with random variables of arbitrary distributions by minimizing stochastic residual error. Comput. Struct. 2023, 288, 107153. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Xu, L.; Zhou, S.; Luo, B.; Ding, K. In-situ investigation on dynamic response of highway transition section with foamed concrete. Earthq. Eng. Eng. Vib. 2025, 24, 1–17. [Google Scholar] [CrossRef]
- Fiore, A.; Greco, R. Influence of Structural Damping Uncertainty on Damping Reduction Factor. J. Earthq. Eng. 2022, 26, 1899–1920. [Google Scholar] [CrossRef]
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- Jin, L.; Kuang, X.; Huang, H.; Qin, Z.; Wang, Y. Study on the overfitting of the artificial neural network forecasting model. Acta Meteorol. Sin. 2005, 19, 216–225. [Google Scholar]
- Igusa, T.; Der Kiureghian, A. Response of Uncertain Systems to Stochastic Excitation. J. Eng. Mech. 1988, 114, 812–832. [Google Scholar] [CrossRef]
- Huo, J.; Liu, L.; Zhang, Y. Comparative research of optimization algorithms for parameters calibration of watershed hydrological model. J. Comput. Methods Sci. Eng. 2016, 16, 653–669. [Google Scholar] [CrossRef]
- Luo, B.; Su, Y.; Ding, X.; Chen, Y.; Liu, C. Modulation of initial CaO/Al2O3 and SiO2/Al2O3 ratios on the properties of slag/fly ash-based geopolymer stabilized clay: Synergistic effects and stabilization mechanism. Mater. Today Commun. 2025, 47, 113295. [Google Scholar] [CrossRef]
- Andrews, D.F.; Mallows, C.L. Scale mixtures of normal distributions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 99–102. [Google Scholar] [CrossRef]
- Abanto-Valle, C.A.; Dey, D.K. State space mixed models for binary responses with scale mixture of normal distributions links. Comput. Stat. Data Anal. 2014, 71, 274–287. [Google Scholar] [CrossRef]
- Polat, E. The effects of different weight functions on partial robust M-regression performance: A simulation study. Commun. Stat.-Simul. Comput. 2020, 49, 1089–1104. [Google Scholar] [CrossRef]
- ACI (American Concrete Institute). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary; ACI: Farmington Hills, MI, USA, 2008. [Google Scholar]
- BSI (British Standards Institution). Eurocode 2: Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings; BSI: London, UK, 2004. [Google Scholar]
- Bažant, Z.P.; Yu, Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation. J. Struct. Eng. 2005, 131, 1877–1885. [Google Scholar] [CrossRef]
- Jeong, C.-Y.; Kim, H.-G.; Kim, S.-W.; Lee, K.-S.; Kim, K.-H. Size effect on shear strength of reinforced concrete beams with tension reinforcement ratio. Adv. Struct. Eng. 2017, 20, 582–594. [Google Scholar] [CrossRef]
- Oreta, A.W.C. Simulating size effect on shear strength of RC beams without stirrups using neural networks. Eng. Struct. 2004, 26, 681–691. [Google Scholar] [CrossRef]
- Rebeiz, K.S. Shear strength prediction for concrete members. J. Struct. Eng. 1999, 125, 301–308. [Google Scholar] [CrossRef]
- Russo, G.; Venir, R.; Pauletta, M. Reinforced concrete deep beams-shear strength model and design formula. ACI Struct. J. 2005, 102, 429–437. [Google Scholar]
- Zararis, P.D.; Papadakis, G.C. Diagonal shear failure and size effect in RC beams without web reinforcement. J. Struct. Eng. 2001, 127, 733–742. [Google Scholar] [CrossRef]
Population Size (P) [-] | Selection Rate (SR) [%] | Crossover Rate (CR) [%] | Mutation Rate (MR) [%] |
---|---|---|---|
1000 | 30 | 50 | 20 |
Implementation | δ | β |
---|---|---|
1 | 1 | 0.2 |
2 | 0.5 | |
3 | 1 | |
4 | 2 | |
5 | 4 | |
6 | 10 | |
7 | 50 | |
8 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, A.; Marasco, S.; Greco, R. Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering. Appl. Sci. 2025, 15, 8432. https://doi.org/10.3390/app15158432
Fiore A, Marasco S, Greco R. Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering. Applied Sciences. 2025; 15(15):8432. https://doi.org/10.3390/app15158432
Chicago/Turabian StyleFiore, Alessandra, Sebastiano Marasco, and Rita Greco. 2025. "Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering" Applied Sciences 15, no. 15: 8432. https://doi.org/10.3390/app15158432
APA StyleFiore, A., Marasco, S., & Greco, R. (2025). Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering. Applied Sciences, 15(15), 8432. https://doi.org/10.3390/app15158432