Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = Intramolecular interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2612 KiB  
Article
Pressure Response of Crystalline Fluoranthene Probed by Raman Spectroscopy
by Olga Karabinaki, Stylianos Papastylianos, Nayra Machín Padrón, Antonios Hatzidimitriou, Dimitrios Christofilos and John Arvanitidis
Crystals 2025, 15(8), 697; https://doi.org/10.3390/cryst15080697 - 30 Jul 2025
Viewed by 154
Abstract
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. [...] Read more.
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. The frequency shifts, accompanied by intensity redistribution among the Raman peaks, are by far larger for the former than those for the latter vibrations, compatible with their nature: weak intermolecular van der Waals interactions and strong intramolecular covalent bonds. For pressures higher than 2 GPa, changes in the linear pressure coefficients of the Raman peak frequencies, mainly towards lower values, are observed. These are more pronounced for intermolecular and C–H stretching vibrations. For P > 4.7 GPa, the pressure coefficients are further reduced, while all the observed pressure-induced changes are fully reversible upon pressure release. These changes may be interpreted either as two structural transitions at ~2 and ~4.7 GPa or as a single, but sluggish, structural phase transition in the pressure range 2–4.7 GPa, featuring the reorientation and different stacking of the molecules. From the high-pressure Raman data in the low-pressure phase, a bulk modulus of ~7 GPa at ambient pressure is estimated for solid fluoranthene. Full article
Show Figures

Graphical abstract

25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 171
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 285
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 229
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

34 pages, 8372 KiB  
Article
Supercomputing Multi-Ligand Modeling, Simulation, Wavelet Analysis and Surface Plasmon Resonance to Develop Novel Combination Drugs: A Case Study of Arbidol and Baicalein Against Main Protease of SARS-CoV-2
by Hong Li, Hailong Su, Akari Komori, Shuxuan Yang, Hailang Luo, Angela Wei Hong Yang, Xiaomin Sun, Hongwei Li, Andrew Hung and Xiaoshan Zhao
Pharmaceuticals 2025, 18(7), 1054; https://doi.org/10.3390/ph18071054 - 17 Jul 2025
Viewed by 354
Abstract
Background/Objectives: Combination therapies using traditional Chinese medicine and Western drugs have gained attention for their enhanced therapeutic effects and reduced side effects. Toujie Quwen Granules (TQG), known for its antiviral properties, particularly against respiratory viruses, could offer new treatment strategies when combined [...] Read more.
Background/Objectives: Combination therapies using traditional Chinese medicine and Western drugs have gained attention for their enhanced therapeutic effects and reduced side effects. Toujie Quwen Granules (TQG), known for its antiviral properties, particularly against respiratory viruses, could offer new treatment strategies when combined with antiviral drugs like arbidol, especially for diseases such as Coronavirus disease. This study investigates the synergistic mechanisms between arbidol and components from TQG against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Methods: We identified compounds from TQG via existing data. Multi-ligand molecular docking, pharmacokinetic/toxicity screening, and preliminary simulations were performed to assess potential synergistic compounds with arbidol. UPLC-Q-Exactive Orbitrap-MS verified the presence of these compounds. Extended simulations and in vitro assays, including Luciferase and surface plasmon resonance, validated the findings. Results: Five compounds interacted with arbidol in synergy based on docking and preliminary dynamics simulation results. Only Baicalein (HQA004) could be identified in the herbal remedy by untargeted metabolomics, with ideal pharmacokinetic properties, and as a non-toxic compound. Extended simulations revealed that HQA004 enhanced arbidol’s antiviral activity via a “Far” Addition Mechanism #2, with an optimal 2:1 arbidol:HQA004 ratio. The movements of arbidol (diffusion and intramolecular conformational shifts) in the system were significantly reduced by HQA004, which may be the main reason for the synergism that occurred. In vitro experiments confirmed an increased inhibition of Mpro by the combination. Conclusions: HQA004 demonstrated synergistic potential with arbidol in inhibiting Mpro. The development of combination therapies integrating Western and herbal medicine is supported by these findings for effective antiviral treatments. Full article
(This article belongs to the Special Issue Antiviral Agents, 2024)
Show Figures

Graphical abstract

22 pages, 5041 KiB  
Article
Molecular Insights into the Temperature-Dependent Binding and Conformational Dynamics of Noraucuparin with Bovine Serum Albumin: A Microsecond-Scale MD Simulation Study
by Erick Bahena-Culhuac and Martiniano Bello
Pharmaceuticals 2025, 18(7), 1048; https://doi.org/10.3390/ph18071048 - 17 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for [...] Read more.
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for drug transport. This study aims to elucidate the structural and energetic characteristics of the noraucuparin–BSA complex under physiological and slightly elevated temperatures. Methods: Microsecond-scale molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born Surface Area (MMGBSA)-binding-free energy calculations were performed to investigate the interaction between noraucuparin and BSA at 298 K and 310 K. Conformational flexibility and per-residue energy decomposition analyses were conducted, along with interaction network mapping to assess ligand-induced rearrangements. Results: Noraucuparin preferentially binds to site II of BSA, near the ibuprofen-binding pocket, with stabilization driven by hydrogen bonding and hydrophobic interactions. Binding at 298 K notably increased the structural mobility of BSA, affecting its global conformational dynamics. Key residues, such as Trp213, Arg217, and Leu237, contributed significantly to complex stability, and the ligand induced localized rearrangements in the protein’s intramolecular interaction network. Conclusions: These findings offer insights into the dynamic behavior of the noraucuparin–BSA complex and enhance the understanding of serum albumin–ligand interactions, with potential implications for drug delivery systems. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 659 KiB  
Article
Insights from the Absorption Coefficient for the Development of Polarizable (Multipole) Force Fields
by Marion Sappl, András Szabadi, Philipp Honegger, Franziska König, Othmar Steinhauser and Christian Schröder
Molecules 2025, 30(14), 2941; https://doi.org/10.3390/molecules30142941 - 11 Jul 2025
Viewed by 247
Abstract
We present a detailed examination of the absorption coefficients in the THz region for different water models using different types of potentials: the non-polarizable SPC/E, the Drude-polarizable SWM4-NDP and OPC3-pol, IPOL-0.13 and the multipole AMOEBA14 water. The primary focus is on understanding the [...] Read more.
We present a detailed examination of the absorption coefficients in the THz region for different water models using different types of potentials: the non-polarizable SPC/E, the Drude-polarizable SWM4-NDP and OPC3-pol, IPOL-0.13 and the multipole AMOEBA14 water. The primary focus is on understanding the interplay between permanent and induced dipole moments and their influence on the THz spectrum. Although the induced dipoles strongly contribute to the peak at 200 cm−1, merely increasing the induced dipole moments does not improve the agreement with experiments. We aim to investigate the behavior of the intensity at 200 cm−1 depending on the water model. Furthermore, we dissect the THz spectra of the water models into distinct contributions to gain more insight into the inter- and intramolecular interactions. Intermolecular interactions significantly contribute to the low-frequency peak, while the peak observed at 600 cm−1 can be adequately attributed to intramolecular dipole–dipole interactions. Full article
(This article belongs to the Special Issue Advances in Computational Spectroscopy, 2nd Edition)
Show Figures

Figure 1

21 pages, 1902 KiB  
Article
Intramolecular Versus Intermolecular Bonding in Drug Gemcitabine and Nucleobases: A Computational Study
by Natarajan Sathiyamoorthy Venkataramanan, Ambigapathy Suvitha and Ryoji Sahara
Molecules 2025, 30(13), 2732; https://doi.org/10.3390/molecules30132732 - 25 Jun 2025
Viewed by 355
Abstract
The adsorption of the drug gemcitabine on nucleobases was investigated using a dispersion-corrected density functional theory (DFT) study. The planar structure of complexes is more stable than those with stacked and buckle-angled configurations. The complexes were found to possess at least two intermolecular [...] Read more.
The adsorption of the drug gemcitabine on nucleobases was investigated using a dispersion-corrected density functional theory (DFT) study. The planar structure of complexes is more stable than those with stacked and buckle-angled configurations. The complexes were found to possess at least two intermolecular hydrogen bonds. The binding energy and interaction energy are both negative, with the highest values observed for the gemcitabine–guanine and the lowest in the gemcitabine–thymine complex. The complex formation was found to be an enthalpy-driven process. Pyrimidine nucleobases have a lower enthalpy of formation than purine nucleobases. The computed HOMA and NICS values on the gemcitabine–nucleobase complexes show a substantial increase compared to the pristine nucleobases. An MESP analysis of the complexes shows a directional interaction and electron density shift between the gemcitabine and the nucleobases. A QTAIM analysis indicates that the intermolecular hydrogen bonds have a partial covalent character. The computed bond energy demonstrates that intermolecular NH⋅⋅⋅N bonds are more potent than other bonds. An energy decomposition analysis using the DLPNO−CCSD(T) method indicates that the complexes exhibit a substantial electrostatic attraction, and dispersion contributes the least towards the system stability. The intermolecular bonds are stronger than the intramolecular bonds in the drug–nucleobase complexes. The strength of intramolecular bonds is determined by the deformation of the gemcitabine ring during the complex formation. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

17 pages, 3505 KiB  
Article
Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units
by Soichiro Kawamorita, Tatsuya Matsuoka, Kazuki Nakamura, Bijak Riyandi Ahadito and Takeshi Naota
Molecules 2025, 30(12), 2664; https://doi.org/10.3390/molecules30122664 - 19 Jun 2025
Viewed by 341
Abstract
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible [...] Read more.
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible linkers remain underexplored, despite increasing interest in their potential TSCT behavior. Herein, we report the design and synthesis of a donor–acceptor–donor (D-A-D)-type complex (1), in which a central naphthalenediimide (NDI) electron acceptor is linked to 2-phenylpyridinato(salicylaldiminato)platinum(II) complexes via flexible alkyl linkers. By systematically varying the linker length (n = 3, 4, 5, 6; 1ad), we achieved precise control over the spatial arrangement between the NDI core and the platinum moieties in solution. Notably, compound 1a (n = 3) adopts an S-shaped conformation in solution, giving rise to a distinct TSCT absorption band. The structural and photophysical properties were thoroughly investigated using single-crystal X-ray diffraction, 1H NMR, NOESY analysis, and DFT calculations, which collectively support the existence of the folded conformation and associated TSCT behavior. These findings highlight that TSCT can be effectively induced in flexible molecular systems by exploiting intramolecular spatial proximity and non-covalent interactions, thereby offering new avenues for the design of responsive optoelectronic materials. Full article
Show Figures

Graphical abstract

15 pages, 1271 KiB  
Article
Probing Hydrogen-Bonding Preferences and Methyl Internal Rotation in Sotolon and Sotolon-(H2O)1,2
by Andrés Verde, Juan Carlos López and Susana Blanco
Int. J. Mol. Sci. 2025, 26(12), 5806; https://doi.org/10.3390/ijms26125806 - 17 Jun 2025
Viewed by 355
Abstract
Sotolon is a chiral furanone derivative featuring three distinct oxygen atoms at carbonyl, hydroxyl, and cyclic ether groups that can serve as hydrogen-bond acceptor sites, making it an ideal model system for probing water’s preferential interactions with competing functional groups. In this study, [...] Read more.
Sotolon is a chiral furanone derivative featuring three distinct oxygen atoms at carbonyl, hydroxyl, and cyclic ether groups that can serve as hydrogen-bond acceptor sites, making it an ideal model system for probing water’s preferential interactions with competing functional groups. In this study, the rotational spectrum of sotolon and its microsolvated complexes, representing the early stages of hydration, was investigated using chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The conformational landscape of sotolon is dominated by a single conformer stabilized by an intramolecular O–H···O=C hydrogen bond. During hydration, water molecules disrupt this interaction by forming closed hydrogen-bonded cycles, resulting in mono- and dihydrated complexes. High-level theoretical calculations underscore the central role of electrostatic interactions in stabilizing these hydrated structures. Furthermore, A/E splittings observed in the rotational spectrum, arising from the internal rotation of one of sotolon’s methyl groups, provide insight into how hydration modulates the methyl internal rotation barrier. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

6 pages, 912 KiB  
Proceeding Paper
Theoretical Assessment of PMMA’s Potential to Remove Beta Blockers from the Aquatic Environment Using Atomistic Calculations
by Svetlana Pelemiš, Andrijana Bilić, Dušica Krunić, Sanja J. Armaković and Stevan Armaković
Eng. Proc. 2025, 99(1), 13; https://doi.org/10.3390/engproc2025099013 - 17 Jun 2025
Viewed by 312
Abstract
Polymethyl methacrylate (PMMA) is a polymer with excellent properties for water remediation. Understanding the molecular interactions between pharmaceuticals, such as β-blockers, and PMMA is essential for optimizing purification technologies. Atomistic calculations provide a detailed understanding of the interaction between molecules without the need [...] Read more.
Polymethyl methacrylate (PMMA) is a polymer with excellent properties for water remediation. Understanding the molecular interactions between pharmaceuticals, such as β-blockers, and PMMA is essential for optimizing purification technologies. Atomistic calculations provide a detailed understanding of the interaction between molecules without the need for expensive equipment. This study presents a computational analysis of how PMMA interacts with salbutamol and atenolol. Geometrical optimizations were performed using semiempirical and density functional theory (DFT) calculations. To identify interactions between PMMA and pharmaceuticals, we employed the reduced density gradient (RDG) approach, providing insight into intramolecular noncovalent interactions between PMMA’s atoms and pharmaceuticals. Full article
Show Figures

Figure 1

15 pages, 1939 KiB  
Article
Impact of O-H···π Hydrogen Bond on IR and NMR Parameters of Cannabidiol: Theoretical and Experimental Study
by Aneta Buczek, Kacper Rzepiela, Teobald Kupka and Małgorzata A. Broda
Molecules 2025, 30(12), 2591; https://doi.org/10.3390/molecules30122591 - 14 Jun 2025
Viewed by 366
Abstract
This study investigates the influence of weak hydrogen bonds on the conformational properties and spectral characteristics of cannabidiol (CBD). Using a combination of FTIR and NMR spectroscopy, we analyze the effects of intramolecular hydrogen bonding, particularly the O-H∙∙∙π interactions, on the molecular behavior [...] Read more.
This study investigates the influence of weak hydrogen bonds on the conformational properties and spectral characteristics of cannabidiol (CBD). Using a combination of FTIR and NMR spectroscopy, we analyze the effects of intramolecular hydrogen bonding, particularly the O-H∙∙∙π interactions, on the molecular behavior of CBD in chloroform solution. FTIR spectra reveal distinct νs(O-H) stretching bands at 3603 cm−1 and 3425 cm−1, corresponding to free and hydrogen-bonded -OH groups, respectively, with experimental results aligning closely with computational data for CBD conformers. Notably, conformer 1a predominates in solution, with weaker hydrogen bonding observed for the -OH(B) group compared to -OH(A). Additionally, the formation of -OH∙∙∙π hydrogen bonds affects key vibrational bands in the 1700–1300 cm−1 region. NMR analysis shows significant shifts in proton and carbon signals, emphasizing the influence of hydrogen bonding on CBD’s electronic environment. The observed changes in coupling constants, although subtle, further highlight the impact of these interactions on spin–spin coupling. Overall, these findings provide deeper insights into the structural and electronic factors governing CBD’s behavior in solution, offering a basis for future studies on hydrogen bonding in biomolecules and their pharmacological implications. Full article
Show Figures

Graphical abstract

30 pages, 5237 KiB  
Article
A Detailed Thermodynamic Description of Ion Pair Binding by a Calix[4]arene Derivative Containing Urea and Amide Functionalities
by Marija Cvetnić, Tamara Rinkovec, Robert Vianello, Gordan Horvat, Nikola Bregović and Vladislav Tomišić
Molecules 2025, 30(11), 2464; https://doi.org/10.3390/molecules30112464 - 4 Jun 2025
Viewed by 689
Abstract
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents [...] Read more.
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents a difficult task that is rarely resolved due to various coupled processes. Here, we present a comprehensive study of ion pair (NaCl, NaHSO4, and NaH2PO4) binding by a ureido–amide calix[4]arene host in acetonitrile using a series of experimental techniques and molecular dynamics simulations. We devoted particular attention to characterizing the side processes (ion association and salt precipitation) and included them in the models describing ion pair complex formation. For this purpose, a multimethod approach (potentiometry, conductometry, ITC, flame AES) was employed, generating reliable data which provided insight into the thermodynamic effect of each included equilibrium. Positive cooperativity was observed in the context of NaCl and NaHSO4 binding by the studied calixarene. Computational results related to the NaCl complex in acetonitrile revealed that favorable Coulombic interactions, changes in affinity for solvent molecule inclusion, and intramolecular hydrogen bonding contributed to cation-induced cooperativity. Full article
Show Figures

Graphical abstract

18 pages, 2225 KiB  
Article
Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels
by Xiangquan Zeng, Linlin Peng, Sirong Liu, Haoluan Wang, He Li, Yu Xi and Jian Li
Foods 2025, 14(11), 1965; https://doi.org/10.3390/foods14111965 - 31 May 2025
Viewed by 531
Abstract
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus [...] Read more.
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus organic acid treatment to fabricate SPI hydrogels with high gel strength and stability. Our results showed that mTG plus glucose-δ-lactone (GDL), lactobionic acid (LBA) or maltobionic acid (MBA) treatment could significantly improve the gel strength, textural properties, and water-holding capacity of SPI hydrogels. Also, the addition of these organic acids remarkably reduced the surface hydrophobicity (H0) and intrinsic fluorescence as well as increased the storage modulus (G′), loss modulus (G″) values, average particle size, and the absolute value of zeta potential of samples. GDL, LBA, or MBA greatly increased the β-sheet level and decreased the α-helix level in hydrogels, as well as dissociated 11S subunits of SPI into 7S subunits. Notably, covalent interactions, hydrogen bonding, and hydrophobic interactions of three organic acids with SPI, as well as the effects of organic acids on the interactions among the intramolecular and intermolecular forces of SPI molecules, contributed to their promoting effects on the formation of hydrogels. The LF-NMR and SEM analyses confirmed the effects of GDL, LBA, and MBA on converting the free water into immobilized and bound water as well as forming a dense stacked aggregate structure. Therefore, GDL, LBA, and MBA are promising agents to be combined with mTG in the fabrication of SPI hydrogels with high gel strength and stability. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

14 pages, 1716 KiB  
Article
Beyond Empirical Trends: Density Functional Theory-Based Nuclear Magnetic Resonance Analysis of Mono-Hydroxyflavone Derivatives
by Feng Wang and Vladislav Vasilyev
Appl. Sci. 2025, 15(11), 5928; https://doi.org/10.3390/app15115928 - 24 May 2025
Viewed by 464
Abstract
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into [...] Read more.
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into its potential as a bioactive scaffold. Among mono-hydroxyflavone (n-HF) isomers, 3-HF exhibits an extensive intramolecular hydrogen-bonding network linking the phenyl B-ring to the A- and γ-pyrone C-rings, enabled by the distinctive C3-OH substitution. Despite a slight non-planarity (dihedral angle: 15.4°), this hydrogen-bonding network enhances rigidity and influences the electronic environment. A 13C-NMR chemical shift analysis revealed pronounced quantum mechanical effects of the C3-OH group, diverging from the trends observed in other flavones. A natural bond orbital (NBO) analysis highlighted an unusual charge distribution, with predominantly positive charges on the γ-pyrone C-ring carbons, in contrast to the typical negative charges in flavones. These effects impact C1s orbital energies, suggesting that the electronic structure plays a more significant role in 13C-NMR shifts than simple ring assignments. Given the established antiviral activity of hydroxylated flavones, the distinct electronic properties of 3-HF may enhance its interaction with SARS-CoV-2 Mpro, making it a potential candidate for further investigation. This study underscores the importance of quantum mechanical methods in elucidating the structure–activity relationships of flavones and highlights 3-HF as a promising scaffold for future antiviral drug development. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

Back to TopTop