Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Shen, P.; Zhao, Z.; Tang, B.Z. Through-Space Conjugation: A Thriving Alternative for Optoelectronic Materials. CCS Chem. 2019, 1, 181–196. [Google Scholar] [CrossRef]
- Shao, S.; Wang, L. Through-space Charge Transfer Polymers for Solution-processed Organic Light-emitting Diodes. Aggregate 2020, 1, 45–56. [Google Scholar] [CrossRef]
- Ye, J.-T.; Qiu, Y.-Q. The Inspiration and Challenge for Through-Space Charge Transfer Architecture: From Thermally Activated Delayed Fluorescence to Non-Linear Optical Properties. Phys. Chem. Chem. Phys. 2021, 23, 15881–15898. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ying, A.; Gong, S. Recent Progress in Thermally Activated Delayed Fluorescence Dendrimers for Solution-processed Organic Light-emitting Diodes. J. Polym. Sci. 2024, 62, 241–265. [Google Scholar] [CrossRef]
- Peng, J.; Hou, L.; Liu, D.; Zhao, Z.; Zhang, J.; Qiu, Z.; Tang, B.Z. Organic Optoelectronic Devices Based on Through-Space Interaction. ACS Appl. Opt. Mater. 2024, 2, 15–27. [Google Scholar] [CrossRef]
- Meng, X.; Lang, X.; Cao, Z. Structure Evolution of Organic Luminescent Molecules Utilizing Through-Space Charge Transfer Mechanism. Chem. Asian J. 2025, 20, e202401488. [Google Scholar] [CrossRef]
- Brown, C.J.; Farthing, A.C. Preparation and Structure of Di-p-Xylylene. Nature 1949, 164, 915–916. [Google Scholar] [CrossRef]
- Cram, D.J.; Steinberg, H. Macro Rings. I. Preparation and Spectra of the Paracyclophanes. J. Am. Chem. Soc. 1951, 73, 5691–5704. [Google Scholar] [CrossRef]
- Cram, D.J.; Allinger, N.L.; Steinberg, H. Macro Rings. VII. The Spectral Consequences of Bringing Two Benzene Rings Face to Face1. J. Am. Chem. Soc. 1954, 76, 6132–6141. [Google Scholar] [CrossRef]
- Jagtap, S.P.; Collard, D.M. Multitiered 2D π-Stacked Conjugated Polymers Based on Pseudo-Geminal Disubstituted [2.2]Paracyclophane. J. Am. Chem. Soc. 2010, 132, 12208–12209. [Google Scholar] [CrossRef]
- Morisaki, Y.; Chujo, Y. Through-Space Conjugated Polymers Consisting of [2.2]Paracyclophane. Polym. Chem. 2011, 2, 1249. [Google Scholar] [CrossRef]
- Bai, M.; Liang, J.; Xie, L.; Sanvito, S.; Mao, B.; Hou, S. Efficient Conducting Channels Formed by the π-π Stacking in Single [2,2]Paracyclophane Molecules. J. Phys. Chem. 2012, 136, 104701. [Google Scholar] [CrossRef]
- Batra, A.; Kladnik, G.; Vázquez, H.; Meisner, J.S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, A.; Venkataraman, L. Quantifying Through-Space Charge Transfer Dynamics in π-Coupled Molecular Systems. Nat. Commun. 2012, 3, 1086. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Jagtap, S.P.; Coropceanu, V.; Brédas, J.; Collard, D.M. π-Stacked Oligo(Phenylene Vinylene)s Based on Pseudo-Geminal Substituted [2.2]Paracyclophanes: Impact of Interchain Geometry and Interactions on the Electronic Properties. Angew. Chem. Int. Ed. 2012, 51, 11629–11632. [Google Scholar] [CrossRef]
- Morisaki, Y.; Kawakami, N.; Nakano, T.; Chujo, Y. Energy-Transfer Properties of a [2.2]Paracyclophane-Based Through-Space Dimer. Chem. Eur. J. 2013, 19, 17715–17718. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, Y.; Kawakami, N.; Shibata, S.; Chujo, Y. Through-Space Conjugated Molecular Wire Comprising Three π-Electron Systems. Chem. Asian J. 2014, 9, 2891–2895. [Google Scholar] [CrossRef] [PubMed]
- Zafra, J.L.; Molina Ontoria, A.; Mayorga Burrezo, P.; Peña-Alvarez, M.; Samoc, M.; Szeremeta, J.; Ramírez, F.J.; Lovander, M.D.; Droske, C.J.; Pappenfus, T.M.; et al. Fingerprints of Through-Bond and Through-Space Exciton and Charge π-Electron Delocalization in Linearly Extended [2.2]Paracyclophanes. J. Am. Chem. Soc. 2017, 139, 3095–3105. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kobayakawa, K.; Matsuzawa, H.; Nishinaga, T.; Hirose, T.; Sako, K.; Mazaki, Y. Macrocyclic Oligothiophene with Stereogenic [2.2]Paracyclophane Scaffolds: Chiroptical Properties from π-Transannular Interactions. Chem. Eur. J. 2017, 23, 3267–3271. [Google Scholar] [CrossRef]
- Morisaki, Y.; Shibata, S.; Chujo, Y. [2.2]Paracyclophane-Based Single Molecular Wire Consisting of Four π-Electron Systems. Can. J. Chem. 2017, 95, 424–431. [Google Scholar] [CrossRef]
- Gon, M.; Morisaki, Y.; Chujo, Y. Optically Active Phenylethene Dimers Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane. Chem. Eur. J. 2017, 23, 6323–6329. [Google Scholar] [CrossRef]
- Spuling, E.; Sharma, N.; Samuel, I.D.W.; Zysman-Colman, E.; Bräse, S. (Deep) Blue through-Space Conjugated TADF Emitters Based on [2.2]Paracyclophanes. Chem. Commun. 2018, 54, 9278–9281. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, Y.; Yoshizawa, M.; Akita, M.; Fujita, M. Engineering Double to Quintuple Stacks of a Polarized Aromatic in Confined Cavities. J. Am. Chem. Soc. 2010, 132, 960–966. [Google Scholar] [CrossRef]
- Morisaki, Y.; Sawamura, T.; Murakami, T.; Chujo, Y. Synthesis of Anthracene-Stacked Oligomers and Polymer. Org. Lett. 2010, 12, 3188–3191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lam, J.W.Y.; Chan, C.Y.K.; Chen, S.; Liu, J.; Lu, P.; Rodriguez, M.; Maldonado, J.; Ramos-Ortiz, G.; Sung, H.H.Y.; et al. Stereoselective Synthesis, Efficient Light Emission, and High Bipolar Charge Mobility of Chiasmatic Luminogens. Adv. Mater. 2011, 23, 5430–5435. [Google Scholar] [CrossRef] [PubMed]
- Rios, C.; Salcedo, R. Computational Study of Electron Delocalization in Hexaarylbenzenes. Molecules 2014, 19, 3274–3296. [Google Scholar] [CrossRef]
- Wu, Y.; Frasconi, M.; Gardner, D.M.; McGonigal, P.R.; Schneebeli, S.T.; Wasielewski, M.R.; Stoddart, J.F. Electron Delocalization in a Rigid Cofacial Naphthalene-1,8:4,5-bis(Dicarboximide) Dimer. Angew. Chem. Int. Ed. 2014, 53, 9476–9481. [Google Scholar] [CrossRef]
- Mathew, S.; Crandall, L.A.; Ziegler, C.J.; Hartley, C.S. Enhanced Helical Folding of Ortho -Phenylenes through the Control of Aromatic Stacking Interactions. J. Am. Chem. Soc. 2014, 136, 16666–16675. [Google Scholar] [CrossRef]
- Hirose, T.; Tsunoi, Y.; Fujimori, Y.; Matsuda, K. Fluorescence Enhancement of Covalently Linked 1-Cyano-1,2-diphenylethene Chromophores with Naphthalene-1,8-diyl Linker Units: Analysis Based on Kinetic Constants. Chem. Eur. J. 2015, 21, 1637–1644. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X.; Zhao, Z.; Tang, B.Z. Multichannel Conductance of Folded Single-Molecule Wires Aided by Through-Space Conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231–4235. [Google Scholar] [CrossRef]
- He, B.; Nie, H.; Chen, L.; Lou, X.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B.Z. High Fluorescence Efficiencies and Large Stokes Shifts of Folded Fluorophores Consisting of a Pair of Alkenyl-Tethered, π-Stacked Oligo- p -Phenylenes. Org. Lett. 2015, 17, 6174–6177. [Google Scholar] [CrossRef]
- Zhuang, Z.; Shen, P.; Ding, S.; Luo, W.; He, B.; Nie, H.; Wang, B.; Huang, T.; Hu, R.; Qin, A.; et al. Synthesis, Aggregation-Enhanced Emission, Polymorphism and Piezochromism of TPE-Cored Foldamers with through-Space Conjugation. Chem. Commun. 2016, 52, 10842–10845. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.C.; Spulber, M.; Neuburger, M.; Palivan, C.G.; Meuwly, M.; Wenger, O.S. Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds. J. Org. Chem. 2016, 81, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Sinnwell, M.A.; MacGillivray, L.R. Halogen-Bond-Templated [2+2] Photodimerization in the Solid State: Directed Synthesis and Rare Self-Inclusion of a Halogenated Product. Angew. Chem. Int. Ed. 2016, 55, 3477–3480. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.S. Folding of Ortho-Phenylenes. Acc. Chem. Res. 2016, 49, 646–654. [Google Scholar] [CrossRef]
- Shen, P.-C.; Zhuang, Z.-Y.; Zhao, Z.-J.; Tang, B.Z. Recent Advances of Folded Tetraphenylethene Derivatives Featuring Through-Space Conjugation. Chin. Chem. Lett. 2016, 27, 1115–1123. [Google Scholar] [CrossRef]
- Vij, V.; Bhalla, V.; Kumar, M. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold. Chem. Rev. 2016, 116, 9565–9627. [Google Scholar] [CrossRef]
- He, B.; Luo, W.; Hu, S.; Chen, B.; Zhen, S.; Nie, H.; Zhao, Z.; Tang, B.Z. Synthesis and Photophysical Properties of New Through-Space Conjugated Luminogens Constructed by Folded Tetraphenylethene. J. Mater. Chem. C 2017, 5, 12553–12560. [Google Scholar] [CrossRef]
- Hayashi, S.; Yamamoto, S.; Koizumi, T. A Cyclic Compound Based on Xanthene-Linked π-Stacked Dimer via Direct Arylation. Chem. Lett. 2017, 46, 200–203. [Google Scholar] [CrossRef]
- Vemuri, G.N.; Pandian, R.R.; Spinello, B.J.; Stopler, E.B.; Kinney, Z.J.; Hartley, C.S. Twist Sense Control in Terminally Functionalized Ortho-Phenylenes. Chem. Sci. 2018, 9, 8260–8270. [Google Scholar] [CrossRef]
- Zhen, S.; Mao, J.-C.; Chen, L.; Ding, S.; Luo, W.; Zhou, X.-S.; Qin, A.; Zhao, Z.; Tang, B.Z. Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space Conjugated Hexaphenylbenzene. Nano Lett. 2018, 18, 4200–4205. [Google Scholar] [CrossRef]
- Shen, P.; Zhuang, Z.; Jiang, X.-F.; Li, J.; Yao, S.; Zhao, Z.; Tang, B.Z. Through-Space Conjugation: An Effective Strategy for Stabilizing Intramolecular Charge-Transfer States. J. Phys. Chem. Lett. 2019, 10, 2648–2656. [Google Scholar] [CrossRef]
- Song, Y.; Tian, M.; Yu, R.; He, L. Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence. ACS Appl. Mater. Interfaces 2021, 13, 60269–60278. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, C.; Li, W.; Zhang, Y.; Yuan, J.; Chen, R. Promoting Through-Space Charge Transfer-Based TADF via Rational Alignment of Quasi-Planar Donor and Acceptor in Solid State. Sci. China Mater. 2023, 66, 3958–3967. [Google Scholar] [CrossRef]
- Dos Santos, J.M.; Hall, D.; Basumatary, B.; Bryden, M.; Chen, D.; Choudhary, P.; Comerford, T.; Crovini, E.; Danos, A.; De, J.; et al. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem. Rev. 2024, 124, 13736–14110. [Google Scholar] [CrossRef]
- Liao, P.; Huang, J.; Yan, Y.; Tang, B.Z. Clusterization-Triggered Emission (CTE): One for All, All for One. Mater. Chem. Front. 2021, 5, 6693–6717. [Google Scholar] [CrossRef]
- Zhang, J.; Alam, P.; Zhang, S.; Shen, H.; Hu, L.; Sung, H.H.Y.; Williams, I.D.; Sun, J.; Lam, J.W.Y.; Zhang, H.; et al. Secondary Through-Space Interactions Facilitated Single-Molecule White-Light Emission from Clusteroluminogens. Nat. Commun. 2022, 13, 3492. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Hong, Y.-L.; Fang, X.-Q.; Wang, C.; Liu, C.-M. Fluorescent Phosphine Oxide-Containing Hyperbranched Polyesters: Design, Synthesis and Their Application for Fe3+ Detection. J. Mater. Chem. C 2023, 11, 1927–1936. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, Z.; Zhang, H.; Tang, B.Z. Emergent Clusteroluminescence from Nonemissive Molecules. Nat. Commun. 2025, 16, 3910. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, B.Z. Through-Space Interactions in Clusteroluminescence. JACS Au 2021, 1, 1805–1814. [Google Scholar] [CrossRef]
- Ruduss, A.; Turovska, B.; Belyakov, S.; Stucere, K.A.; Vembris, A.; Traskovskis, K. Carbene–Metal Complexes As Molecular Scaffolds for Construction of through-Space Thermally Activated Delayed Fluorescence Emitters. Inorg. Chem. 2022, 61, 2174–2185. [Google Scholar] [CrossRef]
- Zhan, L.; Chen, T.; Zhong, C.; Cao, X.; Zhang, Y.; Zou, Y.; Bin, Z.; You, J.; Zhang, D.; Duan, L.; et al. Luminescent Gold(III) Exciplexes Enable Efficient Multicolor Electroluminescence. Sci. China Chem. 2023, 66, 3213–3222. [Google Scholar] [CrossRef]
- Chen, T.; Xu, Y.; Ying, A.; Yang, C.; Lin, Q.; Gong, S. Through-Space Charge-Transfer Organogold(III) Complexes Enable High-Performance X-ray Scintillation and Imaging. Angew. Chem. Int. Ed. 2024, 63, e202401833. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, Y.; Huang, M.; Cheng, L.; Pan, Y.; Wu, C.; Yeh, C.; Li, J.; Lin, Y.; Chi, Y.; et al. Iridium(III) Carbene Complexes Featuring Either Metal-to-Ligand Charge Transfer (MLCT) or Through-Space Charge Transfer (TSCT) Blue Luminescence. Angew. Chem. Int. Ed. 2025, 64, e202424694. [Google Scholar] [CrossRef]
- Li, P.; Chen, Z.; Leung, M.-Y.; Lai, S.-L.; Cheng, S.-C.; Kwok, W.-K.; Ko, C.-C.; Chan, M.-Y.; Yam, V.W.-W. Motivation on Intramolecular Through-Space Charge Transfer for the Realization of Thermally Activated Delayed Fluorescence (TADF)–Thermally Stimulated Delayed Phosphorescence (TSDP) in C^C^N Gold(III) Complexes and Their Applications in Organic Light-Emitting Devices. J. Am. Chem. Soc. 2025, 147, 12092–12104. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; D’Aleo, A.; Inada, K.; Cui, L.; Kim, J.U.; Nakanotani, H.; Adachi, C. Donor–σ–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angew. Chem. Int. Ed. 2017, 56, 16536–16540. [Google Scholar] [CrossRef]
- Song, Y.; Yu, R.; Meng, X.; He, L. Donor-σ-Acceptor Molecules with Alkyl σ-Linkers of Different Lengths: Exploration on the Exciplex Emission and Their Use for Efficient Organic Light-Emitting Diodes. Dye. Pigm. 2023, 208, 110876. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, Z.; Zhi Sun, J.; Huang, F.; Zhang, H.; Zhong Tang, B. How the Length of Through-Space Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s. Angew. Chem. Int. Ed. 2024, 63, e202318245. [Google Scholar] [CrossRef]
- Tu, W.; Xiong, Z.; Wang, L.; Zhang, J.; Sun, J.Z.; Zhang, H.; Tang, B.Z. The Superiority of Nonconjugated Structures in Fluorescence: Through-Space vs. through-Bond Charge Transfer. Sci. China Chem. 2024, 67, 3121–3130. [Google Scholar] [CrossRef]
- Partanen, I.; Hsu, C.; Shi, E.H.; Maisuls, I.; Eskelinen, T.; Karttunen, A.J.; Saarinen, J.J.; Strassert, C.A.; Belyaev, A.; Chou, P.; et al. Organic Room-Temperature near-IR Phosphorescence Harvested by Intramolecular Through-Space Sensitization in Composite Molecules. Angew. Chem. Int. Ed. 2025, 64, e202503327. [Google Scholar] [CrossRef]
- Komiya, N.; Okada, M.; Fukumoto, K.; Jomori, D.; Naota, T. Highly Phosphorescent Crystals of Vaulted trans-Bis(Salicylaldiminato)Platinum(II) Complexes. J. Am. Chem. Soc. 2011, 133, 6493–6496. [Google Scholar] [CrossRef]
- Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. Ultrasound-Induced Emission Enhancement Based on Structure-Dependent Homo- and Heterochiral Aggregations of Chiral Binuclear Platinum Complexes. J. Am. Chem. Soc. 2011, 133, 16054–16061. [Google Scholar] [CrossRef] [PubMed]
- Komiya, N.; Okada, M.; Fukumoto, K.; Kaneta, K.; Yoshida, A.; Naota, T. Vaulted trans-Bis(Salicylaldiminato)Platinum(II) Crystals: Heat-Resistant, Chromatically Sensitive Platforms for Solid-State Phosphorescence at Ambient Temperature. Chem. Eur. J. 2013, 19, 4798–4811. [Google Scholar] [CrossRef] [PubMed]
- Komiya, N.; Itami, N.; Naota, T. Solid-State Phosphorescence of trans-Bis(Salicylaldiminato)Platinum(II) Complexes Bearing Long Alkyl Chains: Morphology Control towards Intense Emission. Chem. Eur. J. 2013, 19, 9497–9505. [Google Scholar] [CrossRef]
- Naito, M.; Souda, H.; Koori, H.; Komiya, N.; Naota, T. Binuclear trans-Bis(Β-iminoaryloxy)Palladium(II) Complexes Doubly Linked with Pentamethylene Spacers: Structure-Dependent Flapping Motion and Heterochiral Association Behavior of the Clothespin-Shaped Molecules. Chem. Eur. J. 2014, 20, 6991–7000. [Google Scholar] [CrossRef]
- Komiya, N.; Okada, M.; Le, N.H.-T.; Kawamorita, S.; Naota, T. Linker-Dependent Chromogenic Control of the Emission of Polymethylene-Vaulted trans-Bis(Salicylaldiminato)Platinum(II) Complexes. J. Lumin. 2015, 161, 363–367. [Google Scholar] [CrossRef]
- Komiya, N.; Okada, M.; Inoue, R.; Kawamorita, S.; Naota, T. Variations in the Emission of Polymethylene-Vaulted trans-Bis(Salicylaldiminato)Platinum(II) Complexes Incorporating Methoxy Functionalities with Linkage Length and Substitution Position. Polyhedron 2015, 98, 75–83. [Google Scholar] [CrossRef]
- Naito, M.; Inoue, R.; Iida, M.; Kuwajima, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Control of Metal Arrays Based on Heterometallics Masquerading in Heterochiral Aggregations of Chiral Clothespin-Shaped Complexes. Chem. Eur. J. 2015, 21, 12927–12939. [Google Scholar] [CrossRef]
- Hashimoto, T.; Fukumoto, K.; Le, N.H.-T.; Matsuoka, T.; Kawamorita, S.; Komiya, N.; Naota, T. Dynamic Neighbouring Participation of Nitrogen Lone Pairs on the Chromogenic Behaviour of trans-Bis(Salicylaldiminato)Pt(II) Coordination Platforms. Dalton Trans. 2016, 45, 19257–19268. [Google Scholar] [CrossRef]
- Inoue, R.; Kawamorita, S.; Naota, T. Single-Point Remote Control of Flapping Motion in Clothespin-Shaped Bimetallic Palladium Complexes Based on the N(Sp2)–N(Sp3) Interconversion in Amide Functionalities. Chem. Eur. J. 2016, 22, 5712–5726. [Google Scholar] [CrossRef]
- Komiya, N.; Nakajima, T.; Hotta, M.; Maeda, T.; Matsuoka, T.; Kawamorita, S.; Naota, T. Kinetic Studies of the Chirality Inversion of Salicylaldiminato–Ruthenium Using Racemic η6-p-Cymene Complexes as a Mechanistic Probe. Eur. J. Inorg. Chem. 2016, 2016, 3148–3156. [Google Scholar] [CrossRef]
- Maeda, T.; Kawamorita, S.; Naota, T. Synthesis, Structure, and Chromogenic Properties of Polymethylene-Vaulted trans-Bis(Salicylaldiminato)Palladium(II) Complexes. Polyhedron 2016, 117, 826–833. [Google Scholar] [CrossRef]
- Matsuoka, T.; Li, Z.; Ikeshita, M.; Kawamorita, S.; Naota, T. Linker Length Dependence of the Chromogenic Properties of Polymethylene-Vaulted trans-Bis(2-Aminotroponato)Palladium(II) Complexes. J. Mol. Struct. 2018, 1165, 217–222. [Google Scholar] [CrossRef]
- Ikeshita, M.; Naota, T. Dynamic Rotational Motions of Vaulted Chiral trans-Bis(Salicylaldiminato)Palladium(II) Complexes Bearing Rigid or Flexible Carbon Chain Linkers. Eur. J. Inorg. Chem. 2018, 2018, 4689–4695. [Google Scholar] [CrossRef]
- Komiya, N.; Hosokawa, T.; Adachi, J.; Inoue, R.; Kawamorita, S.; Naota, T. Regiospecific Remote Pt–H Interactions in Oligomethylene-Vaulted (N^C^N.)-Pincer PtII Complexes. Eur. J. Inorg. Chem. 2018, 2018, 4771–4778. [Google Scholar] [CrossRef]
- Le, N.H.-T.; Inoue, R.; Kawamorita, S.; Komiya, N.; Naota, T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis [2-(Iminomethyl)Imidazolato]Platinum(II) Complexes. Inorg. Chem. 2019, 58, 9076–9084. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.; Mori, T.; Inoue, R.; Naito, M.; Le, N.H.; Kawamorita, S.; Hill, J.P.; Naota, T.; Ariga, K. Emission Control by Molecular Manipulation of Double-Paddled Binuclear PtII Complexes at the Air-Water Interface. Chem. Asian J. 2020, 15, 406–414. [Google Scholar] [CrossRef]
- Kawamorita, S.; Ahadito, B.R.; Naota, T. Proximity Effects on the Phosphorescent Properties of Dinuclear Salicylaldiminato Cyclometalated Iridium(III) Complexes Linked with Polymethylene Spacers. Transit. Met. Chem. 2020, 45, 173–186. [Google Scholar] [CrossRef]
- Komiya, N.; Ikeshita, M.; Tosaki, K.; Sato, A.; Itami, N.; Naota, T. Catalytic Enantioselective Rotation of Watermill-Shaped Dinuclear Pd Complexes. Eur. J. Inorg. Chem. 2021, 2021, 1929–1940. [Google Scholar] [CrossRef]
- Inoue, R.; Naota, T.; Ehara, M. Origin of the Aggregation-Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal–Metal Interactions on Emission Decay in the Crystalline State. Chem. Asian J. 2021, 16, 3129–3140. [Google Scholar] [CrossRef]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Maeda, T.; Mori, T.; Ikeshita, M.; Ma, S.C.; Muller, G.; Ariga, K.; Naota, T. Vortex Flow-controlled Circularly Polarized Luminescence of Achiral Pt(II) Complex Aggregates Assembled at the Air-Water Interface. Small Methods 2022, 6, 2200936. [Google Scholar] [CrossRef]
- Ikeshita, M.; Hara, N.; Imai, Y.; Naota, T. Chiroptical Response Control of Planar and Axially Chiral Polymethylene-Vaulted Platinum(II) Complexes Bearing 1,1′-Binaphthyl Frameworks. Inorg. Chem. 2023, 62, 13964–13976. [Google Scholar] [CrossRef]
- Ikeshita, M.; Ma, S.C.; Muller, G.; Naota, T. Linker-Dependent Control of the Chiroptical Properties of Polymethylene-Vaulted trans-Bis[(β-Iminomethyl)Naphthoxy]Platinum(ii) Complexes. Dalton Trans. 2024, 53, 7775–7787. [Google Scholar] [CrossRef] [PubMed]
- Ikeshita, M.; Takahashi, K.; Hara, N.; Kawamorita, S.; Komiya, N.; Imai, Y.; Naota, T. Ultrasound-induced Circularly Polarized Luminescence Based on Homochiral Aggregation of Clothespin-shaped Pt(II) Complexes. Responsive Mater. 2024, 2, e20240017. [Google Scholar] [CrossRef]
- Takahashi, E.; Takaya, H.; Naota, T. Dynamic Vapochromic Behaviors of Organic Crystals Based on the Open–Close Motions of S-Shaped Donor–Acceptor Folding Units. Chem. Eur. J. 2010, 16, 4793–4802. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, H.; Ma, Y.; Ye, S.; Liu, X.; Zhou, X.; Mou, X.; Wang, L.; Zhao, Q.; Huang, W. Rational Design of Metallophosphors with Tunable Aggregation-Induced Phosphorescent Emission and Their Promising Applications in Time-Resolved Luminescence Assay and Targeted Luminescence Imaging of Cancer Cells. J. Mater. Chem. 2012, 22, 22167. [Google Scholar] [CrossRef]
- Miyake, Y.; Nagata, T.; Tanaka, H.; Yamazaki, M.; Ohta, M.; Kokawa, R.; Ogawa, T. Entropy-Controlled 2D Supramolecular Structures of N,N′-Bis(n-Alkyl)Naphthalenediimides on a HOPG Surface. ACS Nano 2012, 6, 3876–3887. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
1a | 1b | 1d | |
---|---|---|---|
formula | C56H42N6O6Pt2 | C58H46N6O6Pt2 | C64H58Cl4N6O6Pt2 |
Mr | 1285.16 | 1313.22 | 1539.19 |
T/K | 113 | 113 | 113 |
crystal color, habit | gray, block | green, block | Green, chip |
crystal size/mm | 0.01 × 0.07 × 0.02 | 0.04 × 0.03 × 0.01 | 0.08 × 0.05 × 0.01 |
crystal system | monoclinic | monoclinic | triclinic |
space group | P21/c (#14) | P21/n (#14) | P- (#2) |
a/Å | 12.333 (2) | 12.1907 (14) | 11.075 (2) |
b/Å | 17.667 (3) | 16.0374 (18) | 11.224 (3) |
c/Å | 10.1396 (16) | 11.8028 (14) | 13.138 (3) |
α/° | 90 | 90 | 105.686 (3) |
β/° | 96.805 (4) | 93.090 (3) | 92.943 (2) |
γ/° | 90 | 90 | 113.786 (3) |
V/Å3 | 2193.8 (6) | 2304.2 (5) | 1414.7 (6) |
Z | 2 | 2 | 1 |
ρcalcd/g·cm−3 | 1.945 | 1.893 | 1.807 |
μ (MoKα)/cm−1 | 64.091 | 61.044 | 51.680 |
F(000) | 1248.00 | 1280.00 | 756.00 |
2θmax/° | 54.9 | 55.0 | 55.1 |
No. of reflns measd | 21,424 | 33,122 | 27,337 |
No. of obsd reflns | 5000 | 5280 | 6502 |
No. variables | 316 | 325 | 370 |
R1 (I > 2σ(I)) a | 0.0281 | 0.0283 | 0.0446 |
wR2 (all reflns) b | 0.0616 | 0.0533 | 0.0662 |
Goodness of fit | 0.960 | 1.027 | 1.022 |
Complex | λabs [nm] a | λem [nm] b | Φ77K b,c |
---|---|---|---|
1a | 363, 382, 442 (sh), 600 | - | - |
1b | 360, 381, 442 (sh) | 579 | 0.01 |
1c | 360, 381, 436 (sh) | - | - |
1d | 360, 381, 429 (sh) | 554 | 0.06 |
2a | 361, 382, 451 (sh), 628 | - | - |
3 | 444 (sh) | 551 | 0.10 |
4 | 360, 380 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamorita, S.; Matsuoka, T.; Nakamura, K.; Ahadito, B.R.; Naota, T. Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units. Molecules 2025, 30, 2664. https://doi.org/10.3390/molecules30122664
Kawamorita S, Matsuoka T, Nakamura K, Ahadito BR, Naota T. Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units. Molecules. 2025; 30(12):2664. https://doi.org/10.3390/molecules30122664
Chicago/Turabian StyleKawamorita, Soichiro, Tatsuya Matsuoka, Kazuki Nakamura, Bijak Riyandi Ahadito, and Takeshi Naota. 2025. "Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units" Molecules 30, no. 12: 2664. https://doi.org/10.3390/molecules30122664
APA StyleKawamorita, S., Matsuoka, T., Nakamura, K., Ahadito, B. R., & Naota, T. (2025). Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units. Molecules, 30(12), 2664. https://doi.org/10.3390/molecules30122664