Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of SPI Hydrogels
2.3. Gel Strength Analysis
2.4. Textural Analysis
2.5. Water Holding Capacity (WHC) Analysis
2.6. Rheological Analysis
2.7. Surface Hydrophobicity (H0) Analysis
2.8. Zeta Potential and Particle Size Analysis
2.9. Fluorescence Spectroscopy Analysis
2.10. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
2.11. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis
2.12. Protein Interaction Forces Analysis
2.13. Low-Field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) Analysis
2.14. Scanning Electron Microscopy (SEM) Analysis
2.15. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Organic Acids on the Gel Strength of mTG-Induced Cross-Linked SPI Hydrogels
3.2. Effects of Different Organic Acids on the Textural Properties of mTG-Induced Cross-Linked SPI Hydrogels
3.3. Effects of Different Organic Acids on the WHC of mTG-Induced Cross-Linked SPI Hydrogels
3.4. Rheological Properties, H0, Particle Size, and Zeta Potential of mTG-Induced Cross-Linked SPI Hydrogels Treated with GDL, LBA, or MBA
3.5. Fluorescence Spectroscopy, FT-IR, and SDS-PAGE Analysis of mTG-Induced Cross-Linked SPI Hydrogels Treated with GDL, LBA, or MBA
3.6. Effects of GDL, LBA, or MBA on the Composition of Intramolecular and Intermolecular Forces in mTG-Induced Cross-Linked SPI Hydrogels
3.7. Effects of GDL, LBA, or MBA on the Moisture Distribution and Morphological Characteristics of mTG-Induced Cross-Linked SPI Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Li, L.; Lan, Q.; Li, M.; Wu, D.; Chen, H.; Liu, Y.; Lin, D.; Qin, W.; Zhang, Z.; et al. Protein glycosylation: A promising way to modify the functional properties and extend the application in food system. Crit. Rev. Food Sci. Nutr. 2019, 59, 2506–2533. [Google Scholar] [CrossRef] [PubMed]
- Lamsal, B.P.; Jung, S.; Johnson, L.A. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. LWT Food Sci. Technol. 2007, 40, 1215–1223. [Google Scholar] [CrossRef]
- Li, T.-H.; Yang, Y.-Q.; Lv, D.-Y.; Wang, G.-S.; Guo, J.; Wan, Z.-L.; Yang, X.-Q. Formation of a transparent soy protein hydrogel: Controlled thermal aggregation of protein using glutaminase. Food Hydrocoll. 2024, 155, 110202. [Google Scholar] [CrossRef]
- Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de Sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023, 12, 2385. [Google Scholar] [CrossRef]
- Liang, P.; Chen, S.; Fang, X.; Wu, J. Recent advance in modification strategies and applications of soy protein gel properties. Compr. Rev. Food Sci. Food Saf. 2023, 23, e13276. [Google Scholar] [CrossRef]
- Pourmohammadi, K.; Abedi, E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem. 2021, 356, 129679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Y.; Acevedo, N.C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels. Food Chem. 2020, 318, 126421. [Google Scholar] [CrossRef]
- Motoki, M.; Seguro, K. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 1998, 9, 204–210. [Google Scholar] [CrossRef]
- Nivala, O.; Nordlund, E.; Kruus, K.; Ercili-Cura, D. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate. LWT Food Sci. Technol. 2021, 139, 110517. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation properties of salt-extracted pea protein isolate catalyzed by microbial transglutaminase cross-linking. Food Hydrocoll. 2011, 25, 25–31. [Google Scholar] [CrossRef]
- Kamani, M.H.; Semwal, J.; Khaneghah, A.M. Functional modification of grain proteins by dual approaches: Current progress, challenges, and future perspectives. Colloids Surf. B Biointerfaces 2022, 211, 112306. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Chassenieux, C.; Nicolai, T. Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration. Food Hydrocoll. 2018, 77, 66–74. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Y.; Guo, S. Characteristics of soy protein isolate gel induced by glucono-δ-lactone: Effects of the protein concentration during preheating. Food Hydrocoll. 2021, 113, 106525. [Google Scholar] [CrossRef]
- Nicole, M.; Zhang, C.M.; Eric, K.; Hua, Y.F. Salt and Acid-Induced Soft Tofu-Type Gels: Rheology, Structure and Fractal Analysis of Viscoelastic Properties as a Function of Coagulant Concentration. Int. J. Food Eng. 2014, 10, 595–611. [Google Scholar] [CrossRef]
- Bersanetti, P.A.; Escobar, V.H.; Nogueira, R.F.; Ortega, F.d.S.; Schor, P.; Morandim-Giannetti, A.d.A. Enzymatically obtaining hydrogels of PVA crosslinked with ferulic acid in the presence of laccase for biomedical applications. Eur. Polym. J. 2019, 112, 610–618. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Zhao, J.; Guo, F.; You, J.; Zhang, L.; Wang, Y. Alkali-Induced Phenolic Acid Oxidation Enhanced Gelation of Ginkgo Seed Protein. Foods. 2023, 12, 1506. [Google Scholar] [CrossRef]
- Phoon, P.Y.; Sng, A.X.Y.; Yakovlev, N.; Lim, S.H.; Nge, C.E.; Subramanian, G.S.; Gorelik, S.; Kanagasundaram, Y.; Kiryukhin, M.V. Modulating elasticity of heat-set soy protein-curdlan gels by small phenolic acids. Food Hydrocoll. 2024, 154, 110054. [Google Scholar] [CrossRef]
- De’Nobili, M.D.; Soria, M.; Martinefski, M.R.; Tripodi, V.P.; Fissore, E.N.; Rojas, A.M. Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. J. Food Eng. 2016, 175, 1–7. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, M.; Dai, Z.; Xin, F.; Zhou, J.; Dong, W.; Ma, J.; Jiang, M.; Zhang, W. Comprehensive investigation of succinic acid production by Actinobacillus succinogenes: A promising native succinic acid producer. Biofuels Bioprod. Biorefin. 2020, 14, 950–964. [Google Scholar] [CrossRef]
- Zagorska, J.; Paeglite, I.; Galoburda, R. Application of lactobionic acid in ice cream production. Int. J. Dairy Technol. 2022, 75, 701–709. [Google Scholar] [CrossRef]
- Hossain, S.; Khetra, Y.; Dularia, C. Biosynthesis of lactobionic acid: A systematic review. Crit. Rev. Food Sci. Nutr. 2025, 65, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Bieringer, E.; Vazquez, U.G.; Klein, L.; Bravo, N.M.; Tobler, M.; Weuster-Botz, D. Bioproduction and applications of aldobionic acids with a focus on maltobionic and cellobionic acid. Bioprocess Biosyst. Eng. 2023, 46, 921–940. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Wang, Z.; He, Z.; Zeng, M.; Qin, F.; Chen, J. Physicochemical and gel properties of pumpkin seed protein: A comparative study. Int. J. Food Sci. Technol. 2023, 58, 1639–1651. [Google Scholar] [CrossRef]
- Liang, G.; Wen, Y.; Chen, W.; Li, X.; Zeng, M.; He, Z.; Goff, H.D.; Chen, J.; Wang, Z. Enhancing soy protein isolate gels: Combined control of pH and surface charge for improved structural integrity and gel strength. Food Biosci. 2024, 59, 103934. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; He, Z.; Zeng, M.; Chen, Q.; Qin, F.; Wang, Z.; Chen, J. Effect of Protein-Glutaminase on Calcium Sulphate-Induced Gels of SPI with Different Thermal Treatments. Molecules 2023, 28, 1752. [Google Scholar] [CrossRef]
- Jian, H.; Qiao, F.; Yang, P.; Guo, F.; Huang, X.; Adhikari, B.; Chen, J. Roles of soluble and insoluble aggregates induced by soy protein processing in the gelation of myofibrillar protein. Int. J. Food Sci. Technol. 2016, 51, 480–489. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, D.; Sun, L.; Ye, X.; Cao, J.; Li, H.; Liu, X. Investigation into the fabrication of plant-based simulant connective tissue utilizing algae polysaccharide-derived hydrogel. Int. J. Biol. Macromol. 2024, 273, 133126. [Google Scholar] [CrossRef]
- Fu, H.; Li, J.; Yang, X.; Swallah, M.S.; Gong, H.; Ji, L.; Meng, X.; Lyu, B.; Yu, H. The heated-induced gelation of soy protein isolate at subunit level: Exploring the impacts of a and a′ subunits on SPI gelation based on natural hybrid breeding varieties. Food Hydrocoll. 2023, 134, 108008. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Xu, J.; Tu, D.; Zhuang, W.; Tian, Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int. J. Biol. Macromol. 2024, 262, 129782. [Google Scholar] [CrossRef]
- Ji, F.; Liu, H.; Wang, C.; Guo, N.; Shen, Y.; Luo, S.; Jiang, S.; Zheng, Z. Remodeling the structure of soy protein fibrils to hydrogels for co-encapsulation of (-)-epigallocatechin gallate (EGCG) and curcumin: Role of EGCG. Food Hydrocoll. 2024, 147, 109439. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, Y.; Wang, Q. Effect of fatty acid saturation degree on the rheological properties of pea protein and its high-moisture extruded product quality. Food Chem. 2022, 390, 133139. [Google Scholar] [CrossRef]
- Zhang, W.; Hui, B.; Li, X.; Guo, Z.; Li, J. Elucidating the mechanism of inulin-induced improvement in the structural and functional properties of High-moisture extruded products. Food Hydrocoll. 2024, 157, 110449. [Google Scholar] [CrossRef]
- Fu, Y.; Zheng, Y.; Lei, Z.; Xu, P.; Zhou, C. Gelling properties of myosin as affected by L-lysine and L-arginine by changing the main molecular forces and microstructure. Int. J. Food Prop. 2017, 20, S884–S898. [Google Scholar] [CrossRef]
- Xu, Y.; He, C.; Zhou, Z. Modulating the texture of heat-set gels of phosphorylated walnut protein isolates through Glucono-delta-lactone acidification. Food Chem. 2024, 437, 137734. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.-H.; Li, X.-J.; Luo, S.-Z.; Mu, D.-D.; Zhong, X.-Y.; Jiang, S.-T.; Zheng, Z.; Zhao, Y.-Y. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu. LWT-Food Sci. Technol. 2017, 85, 58–65. [Google Scholar] [CrossRef]
- Yang, X.; Ren, Y.; Liu, H.; Huo, C.; Li, L. Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-delta-lactone and organic acid. Int. J. Biol. Macromol. 2021, 185, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Y.; Li, P.; Zhao, J.; Li, X.; Wang, X.; Liu, B.; Ni, L.; Li, H.; Xi, Y.; et al. Encapsulation of roast beef flavor by soy protein isolate/chitosan complex Pickering emulsions to improve its releasing properties during the processing of plant-based meat analogues. Food Chem. 2024, 450, 139313. [Google Scholar] [CrossRef]
- Zhu, P.; Huang, W.; Guo, X.; Chen, L. Strong and elastic pea protein hydrogels formed through pH-shifting method. Food Hydrocoll. 2021, 117, 106705. [Google Scholar] [CrossRef]
- Liu, W.; Gao, H.; McClements, D.J.; Zhou, L.; Wu, J.; Zou, L. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocol. 2019, 88, 210–217. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, T.; Jiang, L. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annu. Rev. Food. Sci. Technol. 2021, 12, 119–147. [Google Scholar] [CrossRef] [PubMed]
- Mozafarpour, R.; Koocheki, A.; Milani, E.; Varidi, M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocoll. 2019, 93, 361–373. [Google Scholar] [CrossRef]
- Pan, N.; Wan, W.; Du, X.; Kong, B.; Liu, Q.; Lv, H.; Xia, X.; Li, F. Mechanisms of Change in Emulsifying Capacity Induced by Protein Denaturation and Aggregation in Quick-Frozen Pork Patties with Different Fat Levels and Freeze-Thaw Cycles. Foods. 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ren, C.; Wei, Y.; Wang, J.; Xu, X.; Du, M.; Wu, C. Soy protein particles with enhanced anti-aggregation behaviors under various heating temperatures, pH, and ionic strengths. Food Res. Int. 2023, 170, 112924. [Google Scholar] [CrossRef]
- Li, T.; Wang, C.; Li, T.; Ma, L.; Sun, D.; Hou, J.; Jiang, Z. Surface Hydrophobicity and Functional Properties of Citric Acid Cross-Linked Whey Protein Isolate: The Impact of pH and Concentration of Citric Acid. Molecules 2018, 23, 2383. [Google Scholar] [CrossRef]
- Pirestani, S.; Nasirpour, A.; Keramat, J.; Desobry, S.; Jasniewski, J. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system. Food Hydrocoll. 2018, 79, 228–234. [Google Scholar] [CrossRef]
- Shen, L.; Tang, C.-H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res. Int. 2012, 48, 108–118. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Yan, X.; Ma, W.; Wu, D.; Du, M. Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems. Food Hydrocoll. 2020, 100, 105417. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Li, M.-M.; Guan, E.-Q.; Yang, Y.-L.; Zhang, T.-J.; Liu, Y.-X.; Bian, K. Interactions between wheat globulin and gluten under alkali or salt condition and its effects on noodle dough rheology and end quality. Food Chem. 2022, 382, 132310. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Liu, X.; Liu, W.; Liu, Q.; Huang, J.; Zhang, L.; Hu, H. Effect of salt ions on mixed gels of wheat gluten protein and potato isolate protein. LWT-Food Sci. Technol. 2022, 154, 112564. [Google Scholar] [CrossRef]
- Yang, D.; Gao, S.; Yang, H. Effects of sucrose addition on the rheology and structure of iota-carrageenan. Food Hydrocoll. 2020, 99, 105317. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.-y.; Li, D.; Wang, L.-j.; Wang, Y. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation. Food Hydrocoll. 2022, 131, 107824. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, B.; Dou, J.; Li, X.; Tian, T.; Tong, X.; Wang, H.; Huang, Y.; Li, Y.; Qi, B.; et al. Structural characterization of soy protein hydrolysates and their transglutaminase-induced gelation properties. LWT Food Sci. Technol. 2023, 179, 114668. [Google Scholar] [CrossRef]
- Xu, X.-L.; Han, M.-Y.; Fei, Y.; Zhou, G.-H. Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci. 2011, 87, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X.-L.; Zhou, G.-H. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 2018, 74, 219–226. [Google Scholar] [CrossRef]
- Xia, W.; Siu, W.K.; Sagis, L.M.C. Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of beta-conglycinin and glycinin. Food Hydrocoll. 2021, 120, 106962. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Wang, H.; Zhou, B.; Jiang, L.; Zhu, X. Effect of pH-shifting and ultrasound on soy/potato protein structure and gelation. Food Hydrocoll. 2025, 159, 110672. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Gong, Y.; Xu, Y.; Luo, S.; Hu, X.; Liu, C. The effect of organic acids on high-moisture extrusion of soy protein isolate: Comparison between monocarboxylic acid and polycarboxylic acids. Food Biosci. 2024, 58, 103664. [Google Scholar] [CrossRef]
- Ju, Q.; Wu, C.; Yuan, Y.; Hu, Y.; Zhou, S.; Luan, G. Insights into the mechanism on Glucono-delta-lactone induced gelation of soybean protein at subunit level. Food Hydrocoll. 2022, 125, 107402. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, A.; Qiu, C.; Liu, Q.; Yang, Y.; Bian, S.; Zeng, F.; Jin, Z. A combined enzymatic and ionic cross-linking strategy for pea protein/sodium alginate double-network hydrogel with excellent mechanical properties and freeze-thaw stability. Food Hydrocoll. 2022, 131, 107737. [Google Scholar] [CrossRef]
- Luo, H.; Guo, C.; Lin, L.; Si, Y.; Gao, X.; Xu, D.; Jia, R.; Yang, W. Combined use of rheology, LF-NMR, and MRI for characterizing the gel properties of hairtail surimi with potato starch. Food Bioprocess Technol. 2020, 13, 637–647. [Google Scholar]
- Chen, K.; Ahmad, M.I.; Jiang, Q.; Zhang, H. Acid-induced hydrogels of edible Chlorella pyrenoidosa protein with composite biopolymers network. Food Chem. 2024, 460, 140699. [Google Scholar] [PubMed]
- Li, M.; Li, B.; Zhang, W. Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI. Food Chem. 2018, 242, 16–21. [Google Scholar] [CrossRef]
- Yang, J.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Ban, X.; Hong, Y. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydr. Polym. 2021, 262, 117926. [Google Scholar] [PubMed]
- Cui, H.; Mu, Z.; Xu, H.; Bilawal, A.; Jiang, Z.; Hou, J. Seven sour substances enhancing characteristics and stability of whey protein isolate emulsion and its heat-induced emulsion gel under the non-acid condition. Food Res. Int. 2024, 192, 114764. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, J.; Zhao, L.; He, W.; Liu, T.; Liu, B. Analysis of the gel properties, microstructural characteristics, and intermolecular forces of soybean protein isolate gel induced by transglutaminase. Food Sci. Nutr. 2022, 10, 772–783. [Google Scholar] [CrossRef]
- Li, C.; Dai, T.; Jiang, D.; Zhang, G.; Deng, L.; Li, T.; Liang, R.; Dai, H.; Fu, A.; Liu, C.; et al. Modulation of acid-induced pea protein gels by gellan gum and glucono-δ-lactone: Rheological and microstructural insights. Food Res. Int. 2024, 195, 114988. [Google Scholar] [CrossRef]
Samples | Hardness (N) | Cohesiveness (%) | Springiness (mm) | Gumminess (N) |
---|---|---|---|---|
Control | 4.17 ± 0.13 | 0.17 ± 0.05 | 2.95 ± 0.22 | 1.27 ± 0.00 |
GDL treatment | ||||
GDL0.2% | 3.90 ± 0.24 b | 0.27 ± 0.00 bc | 8.97 ± 0.08 b | 1.03 ± 0.06 d |
GDL0.4% | 7.62 ± 0.57 a | 0.30 ± 0.06 ab | 10.48 ± 1.01 ab | 2.80 ± 0.10 c |
GDL0.6% | 12.85 ± 3.28 a | 0.24 ± 0.07 bc | 10.59 ± 1.02 ab | 3.24 ± 0.24 c |
GDL0.8% | 14.42 ± 1.74 a | 0.32 ± 0.00 ab | 12.06 ± 1.26 a | 4.68 ± 0.75b |
GDL1.0% | 15.66 ± 0.70 a | 0.42 ± 0.07 a | 12.58 ± 0.43 b | 7.89 ± 0.96 a |
CA treatment | ||||
CA0.2% | 3.24 ± 0.17 b | 0.25 ± 0.03 abc | 4.15 ± 0.09 a | 0.79 ± 0.05 bc |
CA 0.4% | 3.01 ± 0.13 bc | 0.22 ± 0.01 bc | 3.73 ± 0.47 ab | 0.66 ± 0.01 c |
CA 0.6% | 2.52 ± 0.40 c | 0.28 ± 0.01 ab | 4.58 ± 0.66 a | 0.81 ± 0.08 bc |
CA 0.8% | 2.86 ± 0.18 bc | 0.35 ± 0.06 a | 4.34 ± 0.27 a | 0.99 ± 0.09 b |
CA 1.0% | 2.65 ± 0.04 c | 0.26 ± 0.04 ab | 3.98 ± 0.21 a | 0.84 ± 0.15 bc |
MA treatment | ||||
MA0.2% | 4.25 ± 0.23 a | 0.25 ± 0.02 ab | 7.97 ± 0.71 a | 1.10 ± 0.06 a |
MA0.4% | 3.27 ± 0.20 b | 0.21 ± 0.02 ab | 3.98 ± 0.51 bc | 0.82 ± 0.01 bc |
MA0.6% | 3.21 ± 0.27 b | 0.28 ± 0.04 a | 3.96 ± 1.12 bc | 0.90 ± 0.14 b |
MA0.8% | 1.72 ± 0.16 c | 0.24 ± 0.05 ab | 4.56 ± 0.90 bc | 0.50 ± 0.07 d |
MA1.0% | 1.70 ± 0.02 c | 0.26 ± 0.01 ab | 6.01 ± 1.14 ab | 0.67 ± 0.09 cd |
SA treatment | ||||
SA0.2% | 4.14 ± 0.05 a | 0.32 ± 0.03 a | 9.62 ± 0.47 a | 1.20 ± 0.07 a |
SA0.4% | 2.02 ± 1.11 b | 0.30 ± 0.01 a | 3.76 ± 0.45 bc | 0.82 ± 0.07 b |
SA0.6% | 1.27 ± 0.69 b | 0.28 ± 0.06 a | 3.04 ± 0.31 c | 0.61 ± 0.06 c |
SA0.8% | 1.74 ± 0.67 b | 0.31 ± 0.03 a | 4.70 ± 0.99 b | 0.54 ± 0.02 c |
SA1.0% | 1.25 ± 0.07 b | 0.37 ± 0.07 a | 2.76 ± 0.38 c | 0.40 ± 0.03 d |
LBA treatment | ||||
LBA0.2% | 3.68 ± 0.07 c | 0.31 ± 0.12 ab | 6.57 ± 0.15 c | 1.02 ± 0.15 d |
LBA 0.4% | 3.81 ± 0.15 c | 0.30 ± 0.04 b | 8.17 ± 0.41 b | 1.04 ± 0.23 d |
LBA 0.6% | 5.81 ± 0.71 b | 0.33 ± 0.04 ab | 9.50 ± 0.99 ab | 1.92 ± 0.02 c |
LBA 0.8% | 10.12 ± 0.95 a | 0.52 ± 0.16 a | 10.12 ± 0.16 a | 4.70 ± 0.43 a |
LBA 1.0% | 9.25 ± 0.18 a | 0.27 ± 0.02 b | 10.57 ± 0.73 a | 2.98 ± 0.45 b |
MBA treatment | ||||
MBA0.2% | 3.44 ± 0.37 c | 0.35 ± 0.03 bc | 9.51 ± 0.72 c | 1.21 ± 0.03 bc |
MBA 0.4% | 3.77 ± 0.37 bc | 0.30 ± 0.02 c | 10.20 ± 0.56 bc | 1.14 ± 0.05 c |
MBA 0.6% | 4.41 ± 0.63 bc | 0.40 ± 0.04 ab | 10.43 ± 0.14 bc | 1.50 ± 0.06 b |
MBA 0.8% | 4.99 ± 0.87 ab | 0.47 ± 0.03 a | 10.95 ± 0.23 b | 2.34 ± 0.24 a |
MBA 1.0% | 5.97 ± 0.80 a | 0.32 ± 0.03 bc | 14.73 ± 0.26 a | 2.13 ± 0.14 a |
Chemicalbonds | Hydrogen Bonds | Disulfide Bonds | Hydrophobic Interactions | Hydrogen Bonds + Disulfide Bonds | Hydrogen Bonds + Hydrophobic Interactions | Hydrophobic Interactions + Disulfide Bonds | Hydrogen Bonds + Disulfide Bonds + Hydrophobic Interactions |
---|---|---|---|---|---|---|---|
Control | 2.22 ± 0.50 a | 33.77 ± 1.22 b | 1.64 ± 0.35 b | 0.31 ± 0.02 c | −1.10 ± 0.54 b | −12.73 ± 4.33 bc | 32.52 ± 5.49 b |
GDL | 0.97 ± 0.06 b | 22.22 ± 2.27 c | 7.67 ± 1.42 a | 7.00 ± 1.88 c | −0.81 ± 0.15 b | −7.27 ± 2.07 b | 57.10 ± 11.16 a |
LBA | 0.71 ± 0.27 bc | 41.94 ± 5.64 a | 0.81 ± 0.46 b | 58.15 ± 6.05 b | 1.69 ± 0.13 a | −26.45 ± 5.38 c | −39.32 ± 5.59 c |
MBA | 0.25 ± 0.18 c | 46.79 ± 5.07 a | 1.94 ± 0.66 b | 98.05 ± 5.28 a | 2.17 ± 0.40 a | 69.59 ± 13.66 a | −140.51 ± 9.56 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Peng, L.; Liu, S.; Wang, H.; Li, H.; Xi, Y.; Li, J. Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels. Foods 2025, 14, 1965. https://doi.org/10.3390/foods14111965
Zeng X, Peng L, Liu S, Wang H, Li H, Xi Y, Li J. Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels. Foods. 2025; 14(11):1965. https://doi.org/10.3390/foods14111965
Chicago/Turabian StyleZeng, Xiangquan, Linlin Peng, Sirong Liu, Haoluan Wang, He Li, Yu Xi, and Jian Li. 2025. "Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels" Foods 14, no. 11: 1965. https://doi.org/10.3390/foods14111965
APA StyleZeng, X., Peng, L., Liu, S., Wang, H., Li, H., Xi, Y., & Li, J. (2025). Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels. Foods, 14(11), 1965. https://doi.org/10.3390/foods14111965