Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (293)

Search Parameters:
Keywords = ITO thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Viewed by 69
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

32 pages, 1577 KB  
Review
Research Progress on Transparent Conductive Properties of SnO2 Thin Films
by Xuezhi Li, Fuyueyang Tan, Chi Zhang, Jinhui Zhou, Zhengjie Guo, Yikun Yang, Yixian Xie, Xi Cao, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 23; https://doi.org/10.3390/coatings16010023 - 24 Dec 2025
Viewed by 611
Abstract
As a core candidate material for indium-free transparent conductive oxides, tin dioxide (SnO2) thin films are gradually replacing indium tin oxide (ITO) and becoming a research focus in the field of optoelectronic devices, thanks to their excellent physicochemical stability, wide bandgap [...] Read more.
As a core candidate material for indium-free transparent conductive oxides, tin dioxide (SnO2) thin films are gradually replacing indium tin oxide (ITO) and becoming a research focus in the field of optoelectronic devices, thanks to their excellent physicochemical stability, wide bandgap characteristics, and abundant tin resource reserves. This review focuses on SnO2 thin films. Firstly, it elaborates on the tetragonal rutile crystal structure characteristics of SnO2 and the transparent conductive mechanism based on oxygen vacancies and doping elements to regulate free electron concentration, while clarifying the key parameters for evaluating their transparent conductive properties. Subsequently, it systematically summarizes the research progress in preparing SnO2 transparent conductive thin films via physical methods and chemical methods in recent years. It compares the microstructure and transparent conductive properties of thin films prepared by different methods, and analyzes the regulatory laws of preparation processes, doping types, and film thickness on their optoelectronic properties. Furthermore, this work supplements the current application status of SnO2 thin films in devices. Meanwhile, the core performance differences between indium-free tin-based thin film devices and ITO-based devices are compared. Finally, we have summarized the advantages and challenges of physical and chemical methods in the preparation of SnO2 thin films. It also forecasts the application potential of interdisciplinary integration of physical–chemical methods and the development of new doping systems in the preparation of high-performance SnO2 transparent conductive thin films. This review aims to provide theoretical guidance and technical references for the selection and process optimization of SnO2 transparent conductive thin films in fields such as photovoltaic devices and flexible optoelectronic equipment. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

24 pages, 2330 KB  
Review
Analytical Determination of Heavy Metals in Water Using Carbon-Based Materials
by Zhazira Mukatayeva, Diana Konarbay, Yrysgul Bakytkarim, Nurgul Shadin and Yerbol Tileuberdi
Molecules 2026, 31(1), 5; https://doi.org/10.3390/molecules31010005 - 19 Dec 2025
Viewed by 481
Abstract
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents [...] Read more.
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents has led to persistent contamination of aquatic environments by toxic metals, creating an urgent need for sensitive, rapid, and field-deployable analytical technologies. Carbon-based nanomaterials, including graphene, carbon nanotubes (CNTs), and MXene, have emerged as key functional components in modern electrochemical sensors due to their high electrical conductivity, large surface area, and tunable surface chemistry. Based on reported studies, typical detection limits for Pb2+ and Cd2+ using differential pulse voltammetry (DPV) on glassy carbon and thin-film electrodes are in the range of 0.4–1.2 µg/L. For integrated thin-film sensing systems, limits of detection of 0.8–1.2 µg/L are commonly achieved. MXene-based platforms further enhance sensitivity and enable Hg2+ detection with linear response ranges typically between 1 and 5 µg/L, accompanied by clear electrochemical or optical signals. Beyond conventional electrochemical detection, this review specifically highlights self-sustaining visual sensors based on MXene integrated with enzyme-driven bioelectrochemical systems, such as glucose oxidase (GOD) and Prussian blue (PB) assembled on ITO substrates. These systems convert chemical energy into measurable colorimetric signals without external power sources, enabling direct visual identification of Hg2+ ions. Under optimized conditions (e.g., 5 mg/mL GOD and 5 mM glucose), stable and distinguishable color responses are achieved for rapid on-site monitoring. Overall, this review not only summarizes current performance benchmarks of carbon-based sensors but also identifies key challenges, including long-term stability, selectivity under multi-ion interference, and large-scale device integration, while outlining future directions toward portable multisensor water-quality monitoring systems. Full article
Show Figures

Graphical abstract

42 pages, 9085 KB  
Review
In2O3: An Oxide Semiconductor for Thin-Film Transistors, a Short Review
by Christophe Avis and Jin Jang
Molecules 2025, 30(24), 4762; https://doi.org/10.3390/molecules30244762 - 12 Dec 2025
Viewed by 1684
Abstract
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on [...] Read more.
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on transparent and flexible substrates. However, mobilities over 30 cm2/Vs have been difficult to reach and other materials have been introduced. Recently, polycrystalline In2O3 has demonstrated breakthroughs in the field. In2O3 TFTs have attracted attention because of their high mobility of over 100 cm2/Vs, which has been achieved multiple times, and because of their use in scaled devices with channel lengths down to 10 nm for high integration in back-end-of-the-line (BEOL) applications and others. The present review focuses first on the material properties with the understanding of the bandgap value, the importance of the position of the charge neutrality level (CNL), the doping effect of various atoms (Zr, Ge, Mo, Ti, Sn, or H) on the carrier concentration, the optical properties, the effective mass, and the mobility. We introduce the effects of the non-parabolicity of the conduction band and how to assess them. We also introduce ways to evaluate the CNL position (usually at ~EC + 0.4 eV). Then, we describe TFTs’ general properties and parameters, like the field effect mobility, the subthreshold swing, the measurements necessary to assess the TFT stability through positive and negative bias temperature stress, and the negative bias illumination stress (NBIS), to finally introduce In2O3 TFTs. Then, we will introduce vacuum and non-vacuum processes like spin-coating and liquid metal printing. We will introduce the various dopants and their applications, from mobility and crystal size improvements with H to NBIS improvements with lanthanides. We will also discuss the importance of device engineering, introducing how to choose the passivation layer, the source and drain, the gate insulator, the substrate, but also the possibility of advanced engineering by introducing the use of dual gate and 2 DEG devices on the mobility improvement. Finally, we will introduce the recent breakthroughs where In2O3 TFTs are integrated in neuromorphic applications and 3D integration. Full article
Show Figures

Figure 1

11 pages, 1712 KB  
Article
Application of a CdTe Photovoltaic Dosimeter to Therapeutic Megavoltage Photon Beams
by Sang Hee Youn, Sangsu Kim, Jong Hoon Lee and Shinhaeng Cho
Appl. Sci. 2025, 15(24), 13091; https://doi.org/10.3390/app152413091 - 12 Dec 2025
Viewed by 218
Abstract
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from [...] Read more.
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from a clinical linear accelerator to 20 kGy cumulative dose. Electrical and dosimetric properties were assessed based on AM 1.5 current–voltage measurements, external quantum efficiency (EQE), dose linearity, dose-rate dependence, field-size dependence, percentage depth dose (PDD), and one-month reproducibility. With increasing dose (5–20 kGy), the open-circuit voltage and fill factor decreased by ~2–3%, the short-circuit current density by ~10%, retaining ~87% initial efficiency. Series and shunt resistances were stable, while EQE decreased uniformly (~5%), indicating degradation mainly from increased nonradiative recombination. Dose–signal linearity remained intact, and post-irradiation sensitivity loss was corrected with a single calibration factor. Dose-rate dependence was minor; low reverse bias (~3–7 V) enhanced response without nonlinearity. Field-size and PDD responses agreed with ionization chamber data within ~1%, and weekly stability was within ~1%. Parallel stacking of two cells increased signal nearly linearly. CdTe solar-cell detectors thus enable zero-bias, real-time, stable, and scalable dosimetry and strongly agree with reference standards. Full article
Show Figures

Figure 1

15 pages, 3345 KB  
Article
Reassessing Plasmonic Interlayers: The Detrimental Role of Au Nanofilms in P3HT:PCBM Organic Solar Cells
by Alaa Y. Mahmoud
Polymers 2025, 17(24), 3262; https://doi.org/10.3390/polym17243262 - 8 Dec 2025
Viewed by 560
Abstract
This study examines the impact of incorporating a thin gold (Au) nanofilm as an interfacial buffer layer between the anode and the active layer in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) organic solar cells. A nominal 6 nm Au layer was thermally [...] Read more.
This study examines the impact of incorporating a thin gold (Au) nanofilm as an interfacial buffer layer between the anode and the active layer in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) organic solar cells. A nominal 6 nm Au layer was thermally evaporated onto indium tin oxide (ITO) substrates and subsequently annealed at 550 °C for 30 and 60 min before completing the device fabrication. The optical, morphological, and electrical consequences of introducing these annealed Au films were systematically evaluated. Optical measurements revealed a marked enhancement in light absorption: the unannealed Au/P3HT:PCBM film showed a 54% increase at 560 nm, rising to 79% after 60 min of annealing, attributed to localized surface plasmon resonance. In contrast, electrical characterization indicated a decline in overall photovoltaic performance, with all parameters decreasing except for a modest 2% increase in fill factor. Atomic force microscopy further revealed that the actual Au nanofilm thickness was approximately 16 nm—significantly higher than the nominal 6 nm—leading to increased roughness and aggregation. The excessive thickness and roughened morphology of the annealed Au film likely hindered charge transport and reduced exciton generation by scattering and reflecting incident light away from the active layer. These findings highlight the competing effects of Au nanofilms: while they enhance optical absorption, they simultaneously degrade electrical performance. This underscores the importance of carefully optimizing nanofilm thickness and morphology to achieve a balanced interplay between plasmonic enhancement and electronic transport in organic solar cells. Full article
(This article belongs to the Special Issue Advances in Polymeric Organic Optoelectronic Materials and Devices)
Show Figures

Graphical abstract

18 pages, 4056 KB  
Article
Miniaturized Frustum-Cone Triboelectric Hydrophone Based on a Thin Film Perforated Tube Structure
by Yufen Wu, Jing Liu, Yanling Li, Xin Na, Wei Qiu and Qiang Tan
Nanomaterials 2025, 15(23), 1765; https://doi.org/10.3390/nano15231765 - 25 Nov 2025
Viewed by 461
Abstract
Underwater acoustics is the optimal method for long-distance information transmission in aquatic environments. Hydrophones, as the core component of sonar systems, have found widespread application across multiple fields. However, existing types of hydrophones exhibit limited detection capabilities under low-signal conditions. To enhance low-frequency [...] Read more.
Underwater acoustics is the optimal method for long-distance information transmission in aquatic environments. Hydrophones, as the core component of sonar systems, have found widespread application across multiple fields. However, existing types of hydrophones exhibit limited detection capabilities under low-signal conditions. To enhance low-frequency long-range detection performance, the development of new hydrophones featuring low power consumption, low frequency, high sensitivity, and miniaturization has become a research priority, with breakthroughs sought in the principle of electroacoustic conversion. Therefore, this study designed a frustum-cone triboelectric hydrophone (FCTH) based on friction layer materials, utilizing an indium-tin oxide (ITO) flexible conductive film on a polyethylene terephthalate (PET) substrate and a Polytetrafluoroethylene (PTFE) film. The sensor consists of a waterproof, sound-transparent polyurethane flow guide, silicone oil, and a frustum-cone triboelectric sensing unit based on a coupled membrane–cavity structure. The frustum-cone triboelectric sensing unit, based on a thin-film-perforated-tube resonance structure, enables omnidirectional detection of low-frequency hydroacoustic signals. The miniaturized design significantly reduces the volume of the FCTH. The acoustic–electric conversion relationship of the FCTH was derived using acoustic theory, thin-film vibration theory, and Maxwell’s displacement current theory. Furthermore, the low-frequency response characteristics of the frustum-cone triboelectric sensing unit were analyzed. The FCTH achieves a wide-frequency response ranging from 50 Hz to 12,000 Hz, with omnidirectional sensitivity and a maximum sensitivity of −174.6 dB. The FCTH achieves a wide-frequency response capability of 50 Hz to 12,000 Hz, with omnidirectional sensitivity and a maximum sensitivity of −174.6 dB. Additionally, through acoustic signal acquisition experiments in air, indoor, and outdoor water environments, the FCTH has been validated to possess excellent underwater acoustic detection performance and application potential across multiple scenarios. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

28 pages, 8641 KB  
Review
Recent Progress in Dielectric/Ag/Dielectric Transparent Electrodes on Flexible Substrates
by Yawei Wang, Yujie Nian, Shuai Wang, Cailin Lu, Lingfeng Yin, Chunmei Wang, Peiyong Ma and Yingcui Fang
Coatings 2025, 15(12), 1370; https://doi.org/10.3390/coatings15121370 - 24 Nov 2025
Viewed by 775
Abstract
Dielectric/Ag/dielectric (DAD) multilayer thin-film transparent electrode features high visible-light transmittance, low sheet resistance, good mechanical flexibility, and low haze. The fabrication techniques are compatible with large-scale integrated circuits, and the materials are cheap. These advantages make the DAD transparent electrodes a promising alternative [...] Read more.
Dielectric/Ag/dielectric (DAD) multilayer thin-film transparent electrode features high visible-light transmittance, low sheet resistance, good mechanical flexibility, and low haze. The fabrication techniques are compatible with large-scale integrated circuits, and the materials are cheap. These advantages make the DAD transparent electrodes a promising alternative to indium tin oxide (ITO) electrodes for flexible devices. This review summarizes recent advances in DAD transparent electrodes on flexible substrates, mainly focusing on the opto-electrical performance improvement due to damping of the localized surface resonance (LSPR) of Ag nanoparticles (AgNPs). It begins with an analysis of the performance-limiting factors of DAD transparent electrodes, elucidating the importance of damping the LSPR of AgNPs. Subsequently, the state-of-the-art fabrication methods for Ag ultrathin films of weak LSPR and the dielectric material optimization are reviewed. It concludes with perspectives on future research. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

18 pages, 5671 KB  
Article
Investigation of Electron Transport Layer Influence on Asymmetric Bipolar Switching in Transparent BST-Based RRAM Devices
by Kai-Huang Chen, Ming-Cheng Kao, Hsin-Chin Chen, Yao-Chin Wang, Chien-Min Cheng and Wei-Min Xu
Micromachines 2025, 16(11), 1302; https://doi.org/10.3390/mi16111302 - 20 Nov 2025
Viewed by 420
Abstract
Ba0.6Sr0.4TiO3 (BST) thin films were deposited on ITO substrates via rf magnetron sputtering, followed by structural and morphological characterization using XRD and FE-SEM. Metal–insulator–metal (MIM) RRAM devices were fabricated by depositing Al top electrodes, and their electrical properties [...] Read more.
Ba0.6Sr0.4TiO3 (BST) thin films were deposited on ITO substrates via rf magnetron sputtering, followed by structural and morphological characterization using XRD and FE-SEM. Metal–insulator–metal (MIM) RRAM devices were fabricated by depositing Al top electrodes, and their electrical properties were examined through I–V measurements. The optimized BST films deposited at 40% oxygen concentration exhibited stable resistive switching, with an operating voltage of 3 V, an on/off ratio of 1, and a leakage current of 10−8 A. After rapid thermal annealing at 500 °C, the on/off ratio improved to 2 but leakage increased to 10−3 A. Incorporating an electron transport layer (ETL) effectively suppressed the leakage current to 10−5 A while maintaining the on/off ratio at 2. Moreover, a transition from bipolar to unipolar switching was observed at higher oxygen concentration (60%). These results highlight the role of ETLs in reducing leakage and stabilizing switching characteristics, providing guidance for the development of transparent, low-power, and high-reliability BST-based RRAM devices. This study aims to investigate the role of Ba0.6Sr0.4TiO3 (BST) ferroelectric oxide as a functional switching layer in resistive random-access memory (RRAM) and to evaluate how interface engineering using an electron transport layer (ETL) can improve resistive switching stability, leakage suppression, and device reliability. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 1914 KB  
Article
Microstructure Regulation and Optoelectronic Performance Optimization of Flexible CPI-Based ITO Thin Films Under Low-Temperature Heat Treatment Process
by Hanyan Zhang, Ruohe Yao, Weijing Wu and Yi Shen
Coatings 2025, 15(11), 1352; https://doi.org/10.3390/coatings15111352 - 19 Nov 2025
Viewed by 419
Abstract
Addressing the urgent need for low-temperature processes in the manufacturing of flexible vehicle-mounted touch display devices, this study investigates the process–structure–performance relationships of indium tin oxide (ITO) thin films prepared by DC magnetron sputtering on transparent polyimide (CPI) substrates. A synergistic strategy of [...] Read more.
Addressing the urgent need for low-temperature processes in the manufacturing of flexible vehicle-mounted touch display devices, this study investigates the process–structure–performance relationships of indium tin oxide (ITO) thin films prepared by DC magnetron sputtering on transparent polyimide (CPI) substrates. A synergistic strategy of “low-temperature deposition (110 °C)–230 °C atmospheric annealing” was employed. The optimal sample exhibited excellent comprehensive performance: a resistivity as low as 203 μΩ·cm, an average visible light transmittance of 89.2%, a surface roughness of 0.76 nm, and the ability to endure 100,000 bending cycles at a radius of R = 5 mm with a sheet resistance change rate of less than 10%. Microstructural and chemical state analyses revealed that this process facilitates the complete oxidation of Sn2+ to Sn4+ (Sn4+/Sn2+ ratio of 8.2:1) and the controlled formation of oxygen vacancies (O_L/O_V ratio of 6.5:1), leading to a synergistic improvement in carrier concentration (8.7 × 1020 cm−3) and mobility (35.2 cm2/V·s). This work elucidates the crystallization kinetics and doping mechanisms under low-temperature conditions, providing a viable low-temperature technical pathway for the fabrication of high-performance transparent electrodes in flexible electronics. Full article
Show Figures

Figure 1

12 pages, 4359 KB  
Article
Highly Selective Laser Ablation for Thin-Film Electronics: Overcoming Variations Due to Minute Optical Path Length Differences in Plastic Substrates
by Ahmed Fawzy, Henri Fledderus, Jie Shen, Wiel H. Manders, Emile Verstegen and Hylke B. Akkerman
J. Exp. Theor. Anal. 2025, 3(4), 38; https://doi.org/10.3390/jeta3040038 - 14 Nov 2025
Viewed by 493
Abstract
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To [...] Read more.
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To perform laser ablation of functional layers on top of such barrier films, in particular that of transparent electrodes, highly selective laser ablation is required to completely remove the layers without damaging the thin-film barrier layers underneath. When targeting highly selective laser ablation of indium tin oxide (ITO) on top of silicon nitride (SiN) barrier layers with a 1064 nm picosecond or 1030 nm femtosecond laser, we observed the emergence of visible large-scale patterns due to local variations in ablation quality. Our investigations using a very sensitive Raman spectroscopy setup show that the observed ablation variations stem from subtle differences in optical path length within the heat-stabilized plastic substrates. These variations are likely caused by minute, localized changes in the refractive index, introduced during the bi-axial stretching process used in film fabrication. Depending on the optical path length, these variations lead to either constructive or destructive interference between the incoming laser beam and the light reflected from the back surface of the substrate. By performing laser ablation under an angle such that the reflected and incoming laser beam do not spatially overlap, highly selective uniform laser ablation can be performed, even for two stacked optically transparent layers. Full article
Show Figures

Graphical abstract

15 pages, 2783 KB  
Article
Tunable Filtering via Lossy Mode Resonance in Integrated Photonics
by Edvins Letko
Photonics 2025, 12(11), 1086; https://doi.org/10.3390/photonics12111086 - 3 Nov 2025
Viewed by 460
Abstract
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, [...] Read more.
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, the LMR wavelength can be actively tuned under an applied electric field. The results demonstrate a tuning efficiency of 4.0 nm/V, which surpasses many reported EO tunable filters. Optimization studies reveal that thinner ITO electrodes and TiOx layers enhance tuning efficiency, while the initial bulk free carrier concentration has limited influence due to the compensating effect of the Debye length. These findings extend the applicability of LMR beyond sensing, highlighting its potential for active photonic components in integrated optics. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 4803 KB  
Article
Facile Green Synthesis of N-Type InP Thin-Film Photoanodes with Enhanced Photoelectrochemical Performance for Solar Hydrogen Generation
by Ying-Chu Chen, Heng-Yi Lin and Yu-Kuei Hsu
Nanomaterials 2025, 15(20), 1544; https://doi.org/10.3390/nano15201544 - 10 Oct 2025
Viewed by 667
Abstract
Indium phosphide (InP) is a promising photoactive material for solar-driven hydrogen production owing to its optimal bandgap, high carrier mobility, and broad solar absorption. However, conventional InP fabrication relies on costly wafers and toxic precursors, limiting its scalability and sustainability. Here, we demonstrate [...] Read more.
Indium phosphide (InP) is a promising photoactive material for solar-driven hydrogen production owing to its optimal bandgap, high carrier mobility, and broad solar absorption. However, conventional InP fabrication relies on costly wafers and toxic precursors, limiting its scalability and sustainability. Here, we demonstrate a simple and environmentally friendly route to synthesize n-type InP thin-film photoanodes by phosphidating indium films prepared via doctor blade coating on ITO substrates, using NaH2PO2 as a phosphorus source. Structural and spectroscopic analyses (XRD, Raman, XPS, PL) confirmed the successful formation of crystalline InP with optimum quality at 425 °C. Photoelectrochemical measurements revealed a significant photocurrent density of 1.8 mA·cm−2 under AM 1.5 illumination, with extended photoresponse into the near-infrared region. Mott–Schottky and EIS analyses indicated efficient charge separation, low transfer resistance, and unintentional n-type doping due to Sn diffusion from the ITO substrate. This facile and green synthesis route not only provides a scalable approach to III–V semiconductors but also highlights InP thin films as cost-effective and efficient photoanodes for sustainable solar hydrogen generation. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

15 pages, 8373 KB  
Article
Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering
by Miriam Cadenas, Michael Sun, Susana Fernández, Sirona Valdueza-Felip, Ana M. Diez-Pascual and Fernando B. Naranjo
Micromachines 2025, 16(9), 993; https://doi.org/10.3390/mi16090993 - 29 Aug 2025
Viewed by 1313
Abstract
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, [...] Read more.
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, poses challenges due to the thermal degradation of these materials. In this work, the deposition and characterization of AlN thin films by reactive sputtering at a low temperature (RT and 100 °C) on ITO-glass and ITO-PET substrates are presented. The structural, optical, and electrical properties of the samples have been analysed as a function of the sputtering power and the deposition temperature. XRD analysis revealed the absence of peaks of crystalline AlN, indicative of the formation of an amorphous phase. EDX measurements performed on the ITO-glass substrate with a radiofrequency power applied to the Al target of 175 W confirmed the presence of Al and N, corroborating the deposition of AlN. SEM analyses showed the formation of homogeneous and compact layers, and transmission optical measurements revealed a bandgap of around 5.82 eV, depending on the deposition conditions. Electrical resistivity measurements indicated an insulating character. Overall, these findings confirm the potential of amorphous AlN for applications in flexible optoelectronic devices. Full article
Show Figures

Figure 1

17 pages, 2855 KB  
Article
The Effect of Substrate Type on the Optical and Structural Properties of Sol–Gel ZnO and ZnO:Ga Films
by Tatyana Ivanova and Antoaneta Harizanova
Molecules 2025, 30(16), 3342; https://doi.org/10.3390/molecules30163342 - 11 Aug 2025
Viewed by 1140
Abstract
In this work, a sol–gel spin coating method was applied to obtain ZnO and ZnO:Ga thin films on a glass and ITO-coated glass substrate. Their structural, optical, and electrical properties were investigated with respect to their dependence on the different substrates, the number [...] Read more.
In this work, a sol–gel spin coating method was applied to obtain ZnO and ZnO:Ga thin films on a glass and ITO-coated glass substrate. Their structural, optical, and electrical properties were investigated with respect to their dependence on the different substrates, the number of layers (two and four), and the annealing temperature (300 and 400 °C). X-ray diffraction (XRD) patterns showed a hexagonal structure corresponding to the wurtzite phase for ZnO and ZnO:Ga films. ZnO films, deposited on a glass substrate, reveal greater crystallite sizes compared with ZnO films obtained from an ITO substrate. A Ga dopant worsened film crystallization. X-Ray photoelectron spectroscopy (XPS) proves the presence of Ga in a ZnO structure. ZnO films show lower transparency and haze values up to 44.12 (glass substrate) and 33.73 (ITO substrate) at a wavelength of 550 nm. The significant enhancement of ZnO film transparency is observed with Ga doping (with average transmittance in the visible spectral range above 85%, independent of the substrate used). Sheet resistance values are lower for ZnO:Ga films, and the figure of merit values are better compared with those of undoped ZnO films. Work function is studied for ZnO and ZnO:Ga films, deposited on Si, ITO, and glass substrates. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis—2nd Edition)
Show Figures

Figure 1

Back to TopTop