Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = H2O2 biosensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3200 KiB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 210
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
O2-Generated Electrical and Mechanical Properties of Polyphenol-Mediated Hydrogel Sensor
by Sunu Hangma Subba, A Hyeon Kim, Anneshwa Dey, Byung Chan Lee and Sung Young Park
Gels 2025, 11(8), 566; https://doi.org/10.3390/gels11080566 - 22 Jul 2025
Viewed by 185
Abstract
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl [...] Read more.
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl alcohol (PVA) that exploits polyphenol-mediated interactions under N2 and O2 microenvironments. The oxidative susceptibility of the polyphenolic HDP moiety influences its distinct mechanical, physical, and electrochemical properties, allowing the differentiation between cancerous and normal cells. The in vitro assessments with cancer cell lines (HeLa and B16F10) and normal cell lines (CHO-K1) enabled distinctive electrical and mechanophysical outputs, as evidenced by enhanced mechanical compressive modulus and high conductivity, regulated by normoxic cellular states. In addition, the inherent ROS-scavenging capability of the HDP–PVA hydrogel sensor supports its potential application in hypoxia-related diseases, including cancer. Full article
Show Figures

Figure 1

21 pages, 9564 KiB  
Article
Sigma1 Receptor Modulates Plasma Membrane and Mitochondrial Peroxiporins
by Giorgia Pellavio, Giorgia Senise, Chiara Pia Vicenzo and Umberto Laforenza
Cells 2025, 14(14), 1082; https://doi.org/10.3390/cells14141082 - 15 Jul 2025
Viewed by 579
Abstract
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O [...] Read more.
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O2) cell removal. To date, the possible regulation of peroxiporins by S1R has not been explored. Using H2O2 HyPer7 biosensors and knockdown techniques, we investigated (1) the AQPs and S1R functional involvement in H2O2 diffusion through the plasma membrane and in the outer and inner mitochondrial membranes, and (2) the possible interaction between S1R and AQPs. Our data showed the functional involvement of different AQPs in the diffusion of H2O2: AQP3, AQP6, and AQP8 in the plasma membrane; AQP6 in the outer mitochondrial membrane; and AQP6 and AQP8 in the inner mitochondrial membrane. The knockdown of S1R demonstrated its involvement in the overall diffusion of H2O2 across the three compartments. The double knockdown of S1R and a single AQP indicated that AQP8 and AQP6 could be regulated by S1R. These findings demonstrate the coordinated role of AQPs in the mitochondria and the plasma membranes and that S1R modulates the AQP-facilitated H2O2 cell removal, thus controlling the oxidative status and, most likely, the oxidative stress. Full article
Show Figures

Graphical abstract

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 400
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

15 pages, 3844 KiB  
Article
A Low-Cost and Environmentally Friendly Electrochemical Biosensor for the Determination of Estradiol
by Cecylia Wardak, Hubert Wólczyński, Szymon Malinowski, Beata Paczosa-Bator and Magdalena Wardak
Materials 2025, 18(13), 2932; https://doi.org/10.3390/ma18132932 - 20 Jun 2025
Cited by 1 | Viewed by 527
Abstract
Estradiol is a natural estrogen belonging to the group of natural steroid hormones. This paper presents new electrochemical biosensors—simple and low-cost tools for the determination of β-estradiol. The receptor layer of the sensor is the enzyme laccase, which was immobilized on the substrate [...] Read more.
Estradiol is a natural estrogen belonging to the group of natural steroid hormones. This paper presents new electrochemical biosensors—simple and low-cost tools for the determination of β-estradiol. The receptor layer of the sensor is the enzyme laccase, which was immobilized on the substrate surface using the soft plasma polymerization technique. This technique is innovative and environmentally friendly as it allows for the effective deposition of the enzyme onto unmodified and modified electrode substrates. Three types of substrates were used: an unmodified glassy carbon electrode and two electrodes modified with composite layers—multi-walled carbon nanotubes combined with CuO nanoparticles and multi-walled carbon nanotubes combined with carbon nanofibers, respectively. Biosensors modified with such materials have not been described previously. In the course of the study, electrochemical measurement conditions (composition, concentration and pH of the base electrolyte, sensor response time, and interference effects) were optimized, and sensor parameters were determined. It was found that the modification of the substrate electrode increased the sensitivity of the sensor by more than 25 times in both cases and led to a lower detection limit for the sensor modified with the carbon nanotubes/carbon nanofiber composite. The best performance was achieved with the sensor containing the carbon nanotube/carbon nanofiber composite layer, which showed a linearity range of 0.1–5 µM, a sensitivity of 7.32 ± 0.22 µA/µM, and a limit of quantification of 0.078 µM. The analytical utility of this biosensor was confirmed by its successful application in the determination of estradiol in pharmaceutical preparations and river water samples. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 11075 KiB  
Article
Electrochemical Sensors for the Detection of TiO2 Nanoparticles Genotoxicity at Different pH Values Simulating the Gastrointestinal Tract
by Jana Blaškovičová and Dominika Bartánusová
Chemosensors 2025, 13(6), 194; https://doi.org/10.3390/chemosensors13060194 - 22 May 2025
Viewed by 732
Abstract
Titanium dioxide (TiO2) is one of the most widely produced nanomaterials. Many products contain nanoparticles because they have various technological, medical, and economic benefits. However, the presence of nanoparticles in the environment has a negative impact on public health. Due to [...] Read more.
Titanium dioxide (TiO2) is one of the most widely produced nanomaterials. Many products contain nanoparticles because they have various technological, medical, and economic benefits. However, the presence of nanoparticles in the environment has a negative impact on public health. Due to the presence of TiO2 NPs in food, food packaging, and drinking water, they can easily enter the human gastrointestinal tract (GIT), which includes environments with different pH values. These pH changes can affect the stability, dispersion, and toxicity of nanomaterials. Our experiments aimed to monitor the effect of TiO2 NPs incubated at a pH similar to the GIT values on DNA structure. DNA damage was monitored using a DNA biosensor and a biosensing approach with electrochemical voltammetric detection. Cyclic voltammetry (CV) detected damage to DNA/GCE biosensors of up to 10%. The best way to monitor the genotoxicity of TiO2 NPs on DNA structure was the biosensing approach, which changes in the redox indicator current response detected by differential pulse voltammetry (DPV) up to 47.6%. The highest effect of TiO2 was observed for guanine residues at pH 8.0. The results were confirmed by UV–vis spectrophotometry and hyperchromic and bathochromic spectral shifts. Full article
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 482
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

16 pages, 1900 KiB  
Article
Experimental and In Silico Studies on the Development of an Electrochemical Biosensor for the Quantification of H2O2 Based on the ChOx Enzyme
by Elvis Ortiz-Santos, Gabriela Valdés-Ramírez, Cesar Millán-Pacheco, Iris N. Serratos, Maria Luisa Lozano-Camargo, Pablo Dalmasso, Gustavo A. Rivas and Laura Galicia
Biosensors 2025, 15(5), 279; https://doi.org/10.3390/bios15050279 - 29 Apr 2025
Viewed by 521
Abstract
This work presents the development of a biosensing platform for hydrogen peroxide (H2O2) electrochemical reduction. The developed platform uses a multi-walled carbon nanotube paste (PMWCNT) and the enzyme cholesterol oxidase (ChOx). The supramolecular architecture of the PMWCNT/ChOx platform was [...] Read more.
This work presents the development of a biosensing platform for hydrogen peroxide (H2O2) electrochemical reduction. The developed platform uses a multi-walled carbon nanotube paste (PMWCNT) and the enzyme cholesterol oxidase (ChOx). The supramolecular architecture of the PMWCNT/ChOx platform was characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry. The results indicated that the presence of ChOx enhances the sensitivity of electrochemical detection for H2O2 by 21 times compared to that without ChOx. The designed electrochemical sensing bio-platform for H2O2 shows a sensitivity of 26.15 µA/mM in the linear range from 0.4 to 4.0 mM, an LOD of 0.43 µM, and an LOQ of 1.31 µM. Furthermore, in silico studies (molecular dynamics simulations, molecular docking assays, and binding free energy calculations (ΔGb)) were carried out to characterize and validate the molecular interaction between ChOx and H2O2. The computed data confirmed that the binding is spontaneous, and the type of labile interaction promotes a rapid electrochemical reduction of H2O2. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

15 pages, 3355 KiB  
Article
Portable Measurement System for the Characterization of Capacitive Field-Effect Sensors
by Tobias Karschuck, Stefan Schmidt, Stefan Achtsnicht, Joey Ser, Ismail Bouarich, Georges Aboutass, Arshak Poghossian, Patrick H. Wagner and Michael J. Schöning
Sensors 2025, 25(9), 2681; https://doi.org/10.3390/s25092681 - 24 Apr 2025
Viewed by 636
Abstract
A user-friendly, portable, low-cost readout system for the on-site or point-of-care characterization of chemo- and biosensors based on an electrolyte–insulator–semiconductor capacitor (EISCAP) has been developed using a thumb-drive-sized commercial impedance analyzer. The system is controlled by a custom Python script and allows to [...] Read more.
A user-friendly, portable, low-cost readout system for the on-site or point-of-care characterization of chemo- and biosensors based on an electrolyte–insulator–semiconductor capacitor (EISCAP) has been developed using a thumb-drive-sized commercial impedance analyzer. The system is controlled by a custom Python script and allows to characterize EISCAP sensors with different methods (impedance spectra, capacitance-voltage, and constant-capacitance modes), which are selected in a user interface. The performance of the portable readout system was evaluated by pH measurements and the detection of the antibiotic penicillin, hereby using EISCAPs consisting of Al/p-Si/SiO2/Ta2O5 structures and compared to the results obtained with a stationary commercial impedance analyzer. Both the portable and the commercial systems provide very similar results with almost perfectly overlapping recorded EISCAP signals. The new portable system can accelerate the transition of EISCAP sensors from research laboratories to commercial end-user devices. Full article
(This article belongs to the Special Issue Sensors from Miniaturization of Analytical Instruments (2nd Edition))
Show Figures

Figure 1

34 pages, 6861 KiB  
Review
Recent Advances in MOF-Based Materials for Biosensing Applications
by Rudra Kumar, Muhammad Sajid Shafique, Sergio O. Martínez Chapa and Marc J. Madou
Sensors 2025, 25(8), 2473; https://doi.org/10.3390/s25082473 - 14 Apr 2025
Cited by 3 | Viewed by 1647
Abstract
Metal–organic frameworks (MOFs) or coordination polymers have gained enormous interest in recent years due to their extraordinary properties, including their high surface area, tunable pore size, and ability to form nanocomposites with various functional materials. MOF materials possess redox-active properties that are beneficial [...] Read more.
Metal–organic frameworks (MOFs) or coordination polymers have gained enormous interest in recent years due to their extraordinary properties, including their high surface area, tunable pore size, and ability to form nanocomposites with various functional materials. MOF materials possess redox-active properties that are beneficial for electrochemical sensing applications. Furthermore, the tunable pore size and high surface area improve the adsorption or immobilization of enzymes, which can enhance the sensitivity and selectivity for specific analytes. Additionally, MOF-derived metal sulfides, phosphides, and nitrides demonstrate superior electrical conductivity and structural stability, ideal for electrochemical sensing. Moreover, the functionalization of MOFs further increases sensitivity by enhancing electrode–analyte interactions. The inclusion of carbon materials within MOFs enhances their electrical conductivity and reduces background current through optimized loading, preventing agglomeration and ensuring uniform distribution. Noble metals immobilized on MOFs offer improved stability and catalytic performance, providing larger surface areas and uniform nanoparticle dispersion. This review focuses on recent developments in MOF-based biosensors specifically for glucose, dopamine, H2O2, ascorbic acid, and uric acid sensing. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

11 pages, 2582 KiB  
Article
N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide
by Yue Zhang, Shi Zheng, Jian Xiao and Jiangbo Xi
Catalysts 2025, 15(4), 298; https://doi.org/10.3390/catal15040298 - 21 Mar 2025
Viewed by 594
Abstract
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and [...] Read more.
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and mild strategy to enhance the electrochemical behavior of graphene film-based free-standing electrodes. The morphological structure and surface component of the Pd/NPGF were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy measurements. The results revealed that the Pd/NPGF contained abundant pores and uniformly dispersed Pd nanoparticles, which could bring a favorable electrochemical response. Due to the synergetic effects of abundant pores, uniform Pd nanoparticles and the substitutional doping of the graphene framework with N, the novel free-standing Pd/NPGF electrode provides a high active site exposure, a high specific area and fast electron/mass diffusion during electrochemical reactions. Considering the favorable flexibility and excellent electrical conductivity of Pd/NPGF, we selected hydrogen peroxide, a significant biomarker, as a model to investigate its electrochemical performance in neutral conditions. The electrochemical biosensor based on the Pd/NPGF electrode exhibited enhanced activity relative to the NPGF and porous graphene film (PGF) with different concentrations of H2O2. The Pd/NPGF electrode displayed a high sensitivity (176.7 μA·mM−1·cm−2), a large linear range from 5 μM to 36.3 mM, a low limit of detection (LOD) of 2.3 μM, excellent stability and a short response time, all of which qualify the Pd/NPGF electrode for a promising sensor for H2O2 sensing. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

30 pages, 6627 KiB  
Review
Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction
by Hossein Pouri, Rakshya Panta, Prabhu Bharathan, Jiye Fang and Jin Zhang
Micro 2025, 5(2), 15; https://doi.org/10.3390/micro5020015 - 21 Mar 2025
Cited by 1 | Viewed by 1990
Abstract
Hydrogen peroxide (H2O2) detection in both liquid and gas phases has garnered significant attention due to its importance in various biological and industrial processes. Monitoring H2O2 levels is essential for understanding its effects on biology, industry, [...] Read more.
Hydrogen peroxide (H2O2) detection in both liquid and gas phases has garnered significant attention due to its importance in various biological and industrial processes. Monitoring H2O2 levels is essential for understanding its effects on biology, industry, and the environment. Significant advancements in the physical dimensions and performance of biosensors for H2O2 detection have been made, mainly through the integration of fluorescence techniques and nanotechnology. These advancements have resulted in more sensitive, selective, and versatile detection systems, enhancing our ability to monitor H2O2 in both liquid and gas phases effectively. However, limited comprehensive reviews exist on the detection of vaporized H2O2, which is used in disinfection and the production of explosive agents, making its detection vital. This review provides an overview of recent progress in nanostructured fluorescence sensors for H2O2 detection, covering both liquid and gas phases. It examines various fluorescence-based detection methods and focuses on emerging nanomaterials for sensor development. Additionally, it discusses the dual applications of H2O2 detection in biomedical and non-biomedical fields, offering insights into the current state of the field and future directions. Finally, the challenges and perspectives for developing novel nanostructured fluorescence sensors are presented to guide future research in this rapidly evolving area. Full article
Show Figures

Figure 1

12 pages, 2779 KiB  
Article
A Miniaturized Device Based on Cobalt Oxide Nanoparticles for the Quantification of Uric Acid in Artificial and Human Sweat
by Carlos D. Ruiz-Guerrero, Dulce V. Estrada-Osorio, Alejandro Gutiérrez, Fabiola I. Espinosa-Lagunes, Gabriel Luna-Barcenas, Ricardo A. Escalona-Villalpando, Luis G. Arriaga and Janet Ledesma-García
Chemosensors 2025, 13(3), 114; https://doi.org/10.3390/chemosensors13030114 - 20 Mar 2025
Viewed by 596
Abstract
Co3O4-based materials have multiple applications in the field of materials, especially in sensor technology. In this work, Co3O4 nanoparticles were synthesized using a chemical method. The crystalline phase and crystal size were investigated by XRD, the [...] Read more.
Co3O4-based materials have multiple applications in the field of materials, especially in sensor technology. In this work, Co3O4 nanoparticles were synthesized using a chemical method. The crystalline phase and crystal size were investigated by XRD, the morphology by SEM and the oxidation states by XPS techniques. The Co3O4 material was used to immobilize the urate oxidase enzyme (UOx), which showed a higher current density (1.6 times higher) than the enzyme alone in cyclic voltammetry in phosphate buffer pH 5.6. GCE/Co3O4/UOx achieved a linear range of 3.7–500 µM and a higher sensitivity of 65 µA mM−1 cm−2 compared to 45 µA mM−1 cm−2 achieved by the enzyme alone in a uric acid sensor. The favorable activity of GCE/Co3O4/UOx enabled its use in a miniaturized device with low sample volume using artificial and real human sweat. The device was used to quantify uric acid levels in five samples and showed a relative error between the calculated and expected value of less than 10%. The implementation of GCE/Co3O4/UOx is attractive in a biosensor that can be used as a uric acid sensor in biological fluids. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 902
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

22 pages, 1378 KiB  
Article
Microhardness, Young’s and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(3), 494; https://doi.org/10.3390/ma18030494 - 22 Jan 2025
Cited by 5 | Viewed by 1050
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and [...] Read more.
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials’ use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11c122), bond-stretching α and bond-bending β force constants, Kleinmann’s internal displacement ζ, and Born’s transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young’s modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices. Full article
Show Figures

Figure 1

Back to TopTop