N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterization
2.2. Electrochemical Behaviors of the Pd/NPGF Modified Electrodes
3. Materials and Methods
3.1. Reagents and Materials
3.2. Preparation of N-Doped Porous Graphene Film (NPGF)
3.3. Preparation of Pd Nanoparticle-Decorated N-Doped Porous Graphene Film (Pd/NPGF)
3.4. Structure and Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [PubMed]
- Li, H.G.; Xia, N. The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness. Redox Biol. 2020, 37, 101585. [Google Scholar]
- Rhee, S.G. H2O2, a necessary evil for cell signaling. Science 2006, 312, 1882–1883. [Google Scholar] [PubMed]
- Kurowska, E.; Brzózka, A.; Jarosz, M.; Sulka, G.D.; Jaskuła, M. Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta 2013, 104, 439–447. [Google Scholar]
- Guascito, M.R.; Filippo, E.; Malitesta, C.; Manno, D.; Serra, A.; Turco, A. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens. Bioelectron. 2008, 24, 1057–1063. [Google Scholar]
- Chen, H.; Zhang, H.; Chi, K.; Zhao, Y. Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process. Nano Res. 2024, 17, 9498–9506. [Google Scholar]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar]
- Salimi, A.; Hallaj, R.; Soltanian, S.; Mamkhezri, H. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 2007, 594, 24–31. [Google Scholar]
- López Marzo, A.M.; Mayorga-Martinez, C.C.; Pumera, M. 3D-printed graphene direct electron transfer enzyme biosensors. Biosens. Bioelectron. 2020, 151, 111980. [Google Scholar]
- Bai, J.; Jiang, X. A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal. Chem. 2013, 85, 8095–8101. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Wu, J.; Li, L.; Ren, F.; Dai, R.; Dai, F.; Dong, S.; Yang, Z. High-loading Bi-MOF nanoparticles anchored on biomass waste-derived carbon for sensitive non-enzymic nitrite sensing. Microchim Acta 2025, 192, 125. [Google Scholar] [CrossRef]
- Tian, F.; Xu, B.; Zhu, L.; Zhu, G. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode. Anal. Chim. Acta 2001, 443, 9–16. [Google Scholar]
- Luo, L.; Li, F.; Zhu, L.; Zhang, Z.; Ding, Y.; Deng, D. Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode. Electrochim. Acta 2012, 77, 179–183. [Google Scholar]
- Xi, J.; Zhang, Y.; Ye, T.; Xiao, J.; Fang, J.; Han, M.; Zhao, A.; Zhang, Y. Self-supported electrochemical sensor based on uniform palladium nanoparticles functionalized porous graphene film for monitoring H2O2 released from living cells. Anal. Bioanal. Chem. 2024, 416, 6995–7006. [Google Scholar]
- Wan, Y.; Wang, Y.; Wu, J.; Zhang, D. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal. Chem. 2011, 83, 648–653. [Google Scholar]
- Yao, Y.; Ping, J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. TrAC Trends Anal. Chem. 2018, 105, 75–88. [Google Scholar]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 2012, 51, 11496–11500. [Google Scholar]
- Liu, Y.; Li, M.; Zhou, B.; Xuan, X.; Li, H. Flexible B, N co-doped graphene electrodes for electrochemical detection of serotonin in bodily fluids. Electrochim. Acta 2023, 457, 142494. [Google Scholar]
- Xi, J.B.; Zhang, Y.; Wang, Q.J.; Xiao, J.; Chi, K.; Duan, X.M.; Chen, J.; Tang, C.Y.; Sun, Y.M.; Xiao, F.; et al. Multi-element doping design of high-efficient carbocatalyst for electrochemical sensing of cancer cells. Sens. Actuators B Chem. 2018, 273, 108–117. [Google Scholar]
- Kaushal, S.; Kaur, M.; Kaur, N.; Kumari, V.; Singh, P.P. Heteroatom-doped graphene as sensing materials: A mini review. RSC Adv. 2020, 10, 28608–28629. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Jia, A.; Song, J.; Cao, S.; Wang, N.; Liu, X. Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid. Chem. Eng. J. 2023, 474, 145612. [Google Scholar]
- Huang, J.; Li, X.; Xie, R.-H.; Tan, X.; Xi, J.; Tian, F.; Liu, P.; Willum Hansen, T.; Bai, Z.-W. Defect anchoring of atomically dispersed Pd on nitrogen-doped holey carbon nanotube for catalytic hydrogenation of nitroarenes. Appl. Surf. Sci. 2023, 615, 156344. [Google Scholar]
- Zhao, J.; Zhang, A.; Li, Y.; Hu, H.; Xi, J. Pd nanoparticles decorated N-doped holey graphene assembled on aluminum silicate fibers agglomerate for catalytic continuous-flow reduction of nitroarenes. Chem. Eng. Sci. 2024, 286, 119656. [Google Scholar]
- Chen, X.; Wu, G.; Chen, J.; Chen, X.; Xie, Z.; Wang, X. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695. [Google Scholar] [CrossRef]
- Meku, E.; Du, C.; Wang, Y.; Du, L.; Sun, Y.; Kong, F.; Yin, G. Concentration gradient Pd-Ir-Ni/C electrocatalyst with enhanced activity and methanol tolerance for oxygen reduction reaction in acidic medium. Electrochim. Acta 2016, 192, 177–187. [Google Scholar]
- Zheng, G.; Altman, E.I. The oxidation of Pd(111). Surf. Sci. 2000, 462, 151–168. [Google Scholar]
- Zhang, J.; Jia, K.; Huang, Y.; Liu, X.; Xu, Q.; Wang, W.; Zhang, R.; Liu, B.; Zheng, L.; Chen, H.; et al. Intrinsic wettability in pristine graphene. Adv. Mater. 2022, 34, 2103620. [Google Scholar]
- Zhao, A.; She, J.; Xiao, C.; Xi, J.; Xu, Y.; Manoj, D.; Sun, Y.; Xiao, F. Green and controllable synthesis of multi-heteroatoms co-doped graphene fiber as flexible and biocompatible microelectrode for in situ electrochemical detection of biological samples. Sens. Actuators B Chem. 2021, 335, 129683. [Google Scholar]
- Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, J.; Han, L.; Wang, X.; Li, W.; Guo, H.; Wei, H. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal. Chem. 2020, 92, 7444–7452. [Google Scholar] [PubMed]
- Hu, H.; Liu, P.; Cao, S.; You, L.; Zhang, N.; Xi, J.; Guo, S.; Zhou, K. Single metal atoms anchored on N-doped holey graphene as efficient dual-active-component catalysts for nitroarene reduction. Adv. Funct. Mater. 2024, 34, 2307162. [Google Scholar]
- Ma, X.; Wang, J.; Zhu, Z.; Wang, N.; Wang, C.; Nie, G. A two-pronged strategy to boost the capacitive deionization performance of nitrogen-doped porous carbon nanofiber membranes. Desalination 2025, 594, 118293. [Google Scholar]
- Du, S.; Cao, S.; Chen, W.; Xi, J. Fibrous catalyst based on atomic Pd and N-doped holey graphene functionalized cotton fiber for continuous-flow reaction. Int. J. Biol. Macromol. 2024, 280, 136049. [Google Scholar]
- Wang, M.; Liang, L.; Liu, X.; Sun, Q.; Guo, M.; Bai, S.; Xu, Y. Selective semi-hydrogenation of alkynes on palladium-selenium nanocrystals. J. Catal. 2023, 418, 247–255. [Google Scholar]
- Li, J.; Cai, T.; Feng, Y.; Liu, X.; Wang, N.; Sun, Q. Subnanometric bimetallic Pt-Pd clusters in zeolites for efficient hydrogen production and selective tandem hydrogenation of nitroarenes. Sci China Chem 2024, 67, 2911–2917. [Google Scholar] [CrossRef]
- Hu, J.; Li, F.; Wang, K.; Han, D.; Zhang, Q.; Yuan, J.; Niu, L. One-step synthesis of graphene-AuNPs by HMTA and the electrocatalytical application for O2 and H2O2. Talanta 2012, 93, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhou, S.; Zhang, X.; Zeng, T.; Zhang, W.; Li, H.; Liu, X.; Zhao, P. One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sens. Actuators B Chem. 2018, 270, 530–537. [Google Scholar]
- Yao, H.; Zhang, W.-T.; Yan, T.-Y.; Li, X.-Q.; Wang, X.-F. Electrochemical sensor for detection of hydrogen peroxide based on Cu-doped ZIF-8 material modified with chitosan and cytochrome c. Int. J. Electrochem. Sci. 2022, 17, 220654. [Google Scholar]
- Mathivanan, D.; Shalini Devi, K.S.; Sathiyan, G.; Tyagi, A.; da Silva, V.A.O.P.; Janegitz, B.C.; Prakash, J.; Gupta, R.K. Novel polypyrrole-graphene oxide-gold nanocomposite for high performance hydrogen peroxide sensing application. Sens. Actuators A Phys. 2021, 328, 112769. [Google Scholar]
- Li, H.; Zhao, H.; He, H.; Shi, L.; Cai, X.; Lan, M. Pt-Pd bimetallic nanocoral modified carbon fiber microelectrode as a sensitive hydrogen peroxide sensor for cellular detection. Sens. Actuators B Chem. 2018, 260, 174–182. [Google Scholar] [CrossRef]
- Chen, D.; Zhuang, X.; Zhai, J.; Zheng, Y.; Lu, H.; Chen, L. Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sens. Actuators B Chem. 2018, 255, 1500–1506. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, J.; Sheng, Q. One-step synthesis of Au@Pt-Graphene nanocomposites and their electrochemical properties. J. Nanosci. Nanotechnol. 2019, 19, 5546–5553. [Google Scholar] [CrossRef]
- Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.-L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt-Fe3O4@C nanospheres. Anal. Chim. Acta 2019, 1078, 161–167. [Google Scholar] [CrossRef] [PubMed]
- He, F.-G.; Yin, J.-Y.; Sharma, G.; KUmar, A.; Stadler, F.J.; Du, B. Facile fabrication of hierarchical rGO/PANI@PtNi nanocomposite via microwave-assisted treatment for non-enzymatic detection of hydrogen peroxide. Nanomaterials 2019, 9, 1109. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, F.; Yang, N. 3D heteroatom-doped graphene-wrapped flexible carbon fiber microsensor for real-time hydrogen peroxide detection in live cancer cells. Appl. Surf. Sci. 2023, 611, 155655. [Google Scholar] [CrossRef]
- Qi, C.; Luo, Y.; Dong, Y. Synergistic effects of Fe-Se dual single-atom sites for boosting electrochemical nonenzymatic H2O2 sensing. Appl. Surf. Sci. 2023, 637, 157900. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liu, Y.; Cao, X.; Zhang, F.; Xia, J.; Wang, Z. MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H2O2 released from cells. Talanta 2024, 266, 125132. [Google Scholar] [CrossRef]
- Lee, G.-G.; Hong, H.-G. Catalytically synthesized prussian blue by a one-step copolymerization of polydopamine-polypyrrole for electrochemical sensing of hydrogen peroxide. Electrochim. Acta 2023, 465, 142949. [Google Scholar] [CrossRef]
- Nasir, A.; Khalid, S.; Mazare, A.; Yasin, T. Non-enzymatic hydrogen peroxide detection on a novel nanohybrid composite of chitosan and grafted graphene oxide. Mater. Res. Bull. 2023, 167, 112427. [Google Scholar] [CrossRef]
- Li, G.; Zheng, Y.; Hu, G.; Chen, B.; Gu, Y.; Yang, J.; Yang, H.; Hu, F.; Li, C.; Guo, C. Boosting photo-electro-fenton process via atomically dispersed iron sites on graphdiyne for invitro hydrogen peroxide detection. Small 2023, 19, 2301540. [Google Scholar]
- Cheng, D.; Wu, H.; Feng, C.; Ding, Y.; Mei, H. Bifunctional photoelectrochemical sensor based on Bi/Bi2S3/BiVO4 for detecting hexavalent chromium and hydrogen peroxide. Sens. Actuators B Chem. 2022, 353, 131108. [Google Scholar] [CrossRef]
- Du, Y.; Jia, M.; Zhang, X.; Ma, M.; Zhang, X.; Li, C.; Wang, S.; Zhang, J.; Li, D.; He, W.; et al. Graphene oxide covered WO3 nanosheet arrays as photoelectrode for photoelectrochemical detection of trace H2O2. ACS Appl. Nano Mater. 2024, 7, 7896–7905. [Google Scholar]
- Murugan, P.; Sundramoorthy, A.K.; Nagarajan, R.D.; Atchudan, R.; Shanmugam, R.; Ganapathy, D.; Arya, S.; Alothman, A.A.; Ouladsmane, M.; Murthy, H.C.A. Electrochemical detection of H2O2 on graphene nanoribbons/cobalt oxide nanorods-modified electrode. J. Nanomater. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 2015, 87, 1903–1910. [Google Scholar]
- Xu, F.; Sun, Y.; Zhang, Y.; Shi, Y.; Wen, Z.; Li, Z. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem. Commun. 2011, 13, 1131–1134. [Google Scholar]
- Bhaduri, S.N.; Ghosh, D.; Chatterjee, S.; Biswas, R.; Bhaumik, A.; Biswas, P. Fe(iii)-incorporated porphyrin-based conjugated organic polymer as a peroxidase mimic for the sensitive determination of glucose and H2O2. J. Mater. Chem. B 2023, 11, 8956–8965. [Google Scholar]
Electrode Material | Linear Range (mM) | Sensitivity (μA·mM−1·cm−2) | LOD (μM) | Reference |
---|---|---|---|---|
N-HCS/GCE | 0.05–29.5, 29.5–47.5 | - | 0.00002 | [38] |
Cu-doped ZIF-8/Chitosan | 0.01–5.2 | - | 3.7 | [39] |
PPy-GO-AuNPs/GCE | 2.5–25 | 41.35 | 5 | [40] |
Pt-Pd/CFME | 0.005–3.92 | 11.6 | 0.42 | [41] |
PtNPs-CDs/IL-GO/GCE | 0.001–0.9 | 40.3 | 0.1 | [42] |
Au@Ptgraphene | 0.5–22.3 | - | 0.2 | [43] |
Pt-Fe3O4@C | 0.0005–0.06 | 48.8 | 0.43 | [44] |
rGO/PANI@Pt | 0.1–0.126 | - | 1.1 | [45] |
CF@3D-NBG | 0.0005–4.25 | 233 | 0.1 | [46] |
Fe1Se1/NC | 0.02–13 | 1508.6 | 11.5 | [47] |
PCNSs | 0.001–20 | 41.2 | 0.76 | [48] |
PB-PDA-PPY/GCE | 0.005–11.6 | 112 | 3.64 | [49] |
CS/GOP | 0.0005–0.2 | 0.77 | 17.3 | [50] |
Fe-GDY | 0.0001–48.160 | - | 0.033 | [51] |
Bi-BSV | 0.001–130 | - | 0.089 | [52] |
GO/WO3 | 0.1 to 2.0 | 8.14 | 100 | [53] |
GNR/Co3O4 | 0.01–0.200 | 5100 | 1.27 | [54] |
Au NPs−N-GQDs | 0.00025–13.327 | 186.22 | 0.12 | [55] |
Graphene-Pt | 0.002–0.71 | - | 0.5 | [56] |
Fe-DMP-POR | 0.005–2 | 947.67 | 3.16 | [57] |
Pd/NPGF | 0.005–36.3 | 176.7 | 2.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zheng, S.; Xiao, J.; Xi, J. N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide. Catalysts 2025, 15, 298. https://doi.org/10.3390/catal15040298
Zhang Y, Zheng S, Xiao J, Xi J. N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide. Catalysts. 2025; 15(4):298. https://doi.org/10.3390/catal15040298
Chicago/Turabian StyleZhang, Yue, Shi Zheng, Jian Xiao, and Jiangbo Xi. 2025. "N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide" Catalysts 15, no. 4: 298. https://doi.org/10.3390/catal15040298
APA StyleZhang, Y., Zheng, S., Xiao, J., & Xi, J. (2025). N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide. Catalysts, 15(4), 298. https://doi.org/10.3390/catal15040298