Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,469)

Search Parameters:
Keywords = Grid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 (registering DOI) - 17 Jul 2025
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

26 pages, 3347 KiB  
Article
Identifying Critical Risks in Low-Carbon Innovation Network Ecosystem: Interdependent Structure and Propagation Dynamics
by Ruguo Fan, Yang Qi, Yitong Wang and Rongkai Chen
Systems 2025, 13(7), 599; https://doi.org/10.3390/systems13070599 (registering DOI) - 17 Jul 2025
Abstract
Global low-carbon innovation networks face increasing vulnerabilities amid growing geopolitical tensions and technological competition. The interdependent structure of low-carbon innovation networks and the risk propagation dynamics within them remain poorly understood. This study investigates vulnerability patterns by constructing a two-layer interdependent network model [...] Read more.
Global low-carbon innovation networks face increasing vulnerabilities amid growing geopolitical tensions and technological competition. The interdependent structure of low-carbon innovation networks and the risk propagation dynamics within them remain poorly understood. This study investigates vulnerability patterns by constructing a two-layer interdependent network model based on Chinese low-carbon patent data, comprising a low-carbon collaboration network of innovation entities and a low-carbon knowledge network of technological components. Applying dynamic shock propagation modeling, we analyze how risks spread within and between network layers under various shocks. Our findings reveal significant differences in vulnerability distribution: the knowledge network consistently demonstrates greater susceptibility to cascading failures than the collaboration network, reaching complete system failure, while the latter maintains partial resilience, with resilience levels stabilizing at approximately 0.64. Critical node analysis identifies State Grid Corporation as a vulnerability point in the collaboration network, while multiple critical knowledge elements can independently trigger system-wide failures. Cross-network propagation follows distinct patterns, with knowledge-network failures consistently preceding collaboration network disruptions. In addition, propagation from the collaboration network to the knowledge network showed sharp transitions at specific threshold values, while propagation in the reverse direction displayed more gradual responses. These insights suggest tailored resilience strategies, including policy decentralization approaches, ensuring technological redundancy across critical knowledge domains and strengthening cross-network coordination mechanisms to enhance low-carbon innovation system stability. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

12 pages, 231 KiB  
Systematic Review
Cybersecurity Issues in Electrical Protection Relays: A Systematic Review
by Giovanni Battista Gaggero, Paola Girdinio and Mario Marchese
Energies 2025, 18(14), 3796; https://doi.org/10.3390/en18143796 (registering DOI) - 17 Jul 2025
Abstract
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce [...] Read more.
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce significant cybersecurity risks, making them potential targets for malicious attacks. Cyber threats against digital protection relays can lead to severe consequences, including cascading failures, equipment damage, and compromised grid security. This paper presents a comprehensive review of cybersecurity challenges in digital electrical protection relays, focusing on four key areas: (1) a taxonomy of cyber attack models targeting protection relays, (2) the associated risks and their potential impact on power systems, (3) existing mitigation strategies to enhance relay security, and (4) future research directions to strengthen resilience against cyber threats. Full article
Show Figures

Figure 1

14 pages, 395 KiB  
Article
Economical Regulating Strategies Based on Enhanced EVM Model in Electric Substation Construction Projects
by Hongyan Xin, Zhengdong Wan, Yan Huang and Jinsong Zhang
Energies 2025, 18(14), 3795; https://doi.org/10.3390/en18143795 (registering DOI) - 17 Jul 2025
Abstract
With the increasing demand for electricity in modern society, the scale of substation construction projects has greatly expanded, and the ever-increasing technical requirements have led to rising project costs year by year. Effective cost management not only enhances a company’s market competitiveness but [...] Read more.
With the increasing demand for electricity in modern society, the scale of substation construction projects has greatly expanded, and the ever-increasing technical requirements have led to rising project costs year by year. Effective cost management not only enhances a company’s market competitiveness but also ensures the construction quality of projects. This paper addressed the issues of cost management in substation projects by exploring the application of unbalanced bidding, target costing, and improved earned value management (EVM) in cost control. By introducing quality indicators to improve traditional EVM, this study proposed a comprehensive evaluation model that considers cost, schedule, and quality to ensure a good construction performance of substations. Using LT 220 kV substation of Company A project as a case study, the paper analyzed specific measures of cost management in the bidding decision, preparation, and construction phases, verifying the feasibility and effectiveness of the improved model. The results indicated that the enhanced EVM can effectively improve cost control in substation projects, achieving an optimal balance among quality, schedule, and cost with significant practical application value. Full article
Show Figures

Figure 1

14 pages, 3371 KiB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 (registering DOI) - 17 Jul 2025
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

18 pages, 11737 KiB  
Article
MoHiPr-TB: A Monthly Gridded Multi-Source Merged Precipitation Dataset for the Tarim Basin Based on Machine Learning
by Ping Chen, Junqiang Yao, Jing Chen, Mengying Yao, Liyun Ma, Weiyi Mao and Bo Sun
Remote Sens. 2025, 17(14), 2483; https://doi.org/10.3390/rs17142483 (registering DOI) - 17 Jul 2025
Abstract
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a [...] Read more.
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a feedforward neural network (FNN). FNN, which was found to be superior to the other models, was used to integrate eight precipitation datasets spanning from 1990 to 2022 across the Tarim Basin, resulting in a new monthly high-resolution (0.1°) precipitation dataset named MoHiPr-TB. This dataset was subsequently bias-corrected by the China Land Data Assimilation System version 2.0 (CLDAS2.0). Validation results indicate that the corrected MoHiPr-TB not only accurately reflects the spatial distribution of precipitation but also effectively simulates its intensity and interannual and seasonal variations. Moreover, MoHiPr-TB is capable of detecting the precipitation–elevation relationship in the Pamir Plateau, where precipitation initially increases and then decreases with elevation, as well as the synchronous variation of precipitation and elevation in the Tianshan region. Collectively, this study delivers a high-accuracy precipitation dataset for the Tarim Basin, which is anticipated to have extensive applications in meteorological, hydrological, and ecological research. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

25 pages, 4363 KiB  
Article
Method for Predicting Transformer Top Oil Temperature Based on Multi-Model Combination
by Lin Yang, Minghe Wang, Liang Chen, Fan Zhang, Shen Ma, Yang Zhang and Sixu Yang
Electronics 2025, 14(14), 2855; https://doi.org/10.3390/electronics14142855 (registering DOI) - 17 Jul 2025
Abstract
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature [...] Read more.
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature prediction. However, it overlooks the influence of other features. This has a negative effect on the prediction accuracy. Furthermore, the training dataset is often made up of data from a single transformer. This leads to the poor generalization of the prediction. To tackle these challenges, this paper leverages large-scale data analysis and processing techniques, and presents a transformer top oil temperature prediction model that combines multiple models. The Convolutional Neural Network was applied in this method to extract spatial features from multiple input variables. Subsequently, a Long Short-Term Memory network was employed to capture dynamic patterns in the time series. Meanwhile, a Transformer encoder enhanced feature interaction and global perception. The spatial characteristics extracted by the CNN and the temporal characteristics extracted by LSTM were further integrated to create a more comprehensive representation. The established model was optimized using the Whale Optimization Algorithm to improve prediction accuracy. The results of the experiment indicate that the maximum RMSE and MAPE of this method on the summer and winter datasets were 0.5884 and 0.79%, respectively, demonstrating superior prediction accuracy. Compared with other models, the proposed model improved prediction performance by 13.74%, 36.66%, and 43.36%, respectively, indicating high generalization capability and accuracy. This provides theoretical support for condition monitoring and fault warning of power equipment. Full article
Show Figures

Figure 1

22 pages, 4837 KiB  
Article
Leveraging Historical Process Data for Recombinant P. pastoris Fermentation Hybrid Deep Modeling and Model Predictive Control Development
by Emils Bolmanis, Vytautas Galvanauskas, Oskars Grigs, Juris Vanags and Andris Kazaks
Fermentation 2025, 11(7), 411; https://doi.org/10.3390/fermentation11070411 (registering DOI) - 17 Jul 2025
Abstract
Hybrid modeling techniques are increasingly important for improving predictive accuracy and control in biomanufacturing, particularly in data-limited conditions. This study develops and experimentally validates a hybrid deep learning model predictive control (MPC) framework for recombinant P. pastoris fed-batch fermentations. Bayesian optimization and grid [...] Read more.
Hybrid modeling techniques are increasingly important for improving predictive accuracy and control in biomanufacturing, particularly in data-limited conditions. This study develops and experimentally validates a hybrid deep learning model predictive control (MPC) framework for recombinant P. pastoris fed-batch fermentations. Bayesian optimization and grid search techniques were employed to identify the best-performing hybrid model architecture: an LSTM layer with 2 hidden units followed by a fully connected layer with 8 nodes and ReLU activation. This design balanced accuracy (NRMSE 4.93%) and computational efficiency (AICc 998). This architecture was adapted to a new, smaller dataset of bacteriophage Qβ coat protein production using transfer learning, yielding strong predictive performance with low validation (3.53%) and test (5.61%) losses. Finally, the hybrid model was integrated into a novel MPC system and experimentally validated, demonstrating robust real-time substrate feed control in a way that allows it to maintain specific target growth rates. The system achieved predictive accuracies of 6.51% for biomass and 14.65% for product estimation, with an average tracking error of 10.64%. In summary, this work establishes a robust, adaptable, and efficient hybrid modeling framework for MPC in P. pastoris bioprocesses. By integrating automated architecture searching, transfer learning, and MPC, the approach offers a practical and generalizable solution for real-time control and supports scalable digital twin deployment in industrial biotechnology. Full article
Show Figures

Figure 1

25 pages, 5872 KiB  
Article
Application of Twisting Controller and Modified Pufferfish Optimization Algorithm for Power Management in a Solar PV System with Electric-Vehicle and Load-Demand Integration
by Arunesh Kumar Singh, Rohit Kumar, D. K. Chaturvedi, Ibraheem, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(14), 3785; https://doi.org/10.3390/en18143785 (registering DOI) - 17 Jul 2025
Abstract
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and [...] Read more.
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and pollution. Active and reactive powers are controlled by a proportional–integral controller, whereas energy storage batteries improve the quality of energy by storing both current and voltage, which have an impact on steady-state error. Since traditional controllers are unable to maximize the energy output of solar systems, artificial intelligence (AI) is essential for enhancing the energy generation of PV systems under a variety of climatic conditions. Nevertheless, variations in the weather can have an impact on how well photovoltaic systems function. This paper presents an intelligent power management controller (IPMC) for obtaining power management with load and electric-vehicle applications. The architecture combines the solar PV, battery with electric-vehicle load, and grid system. Initially, the PV architecture is utilized to generate power from the irradiance. The generated power is utilized to compensate for the required load demand on the grid side. The remaining PV power generated is utilized to charge the batteries of electric vehicles. The power management of the PV is obtained by considering the proposed control strategy. The power management controller is a combination of the twisting sliding-mode controller (TSMC) and Modified Pufferfish Optimization Algorithm (MPOA). The proposed method is implemented, and the application results are matched with the Mountain Gazelle Optimizer (MSO) and Beluga Whale Optimization (BWO) Algorithm by evaluating the PV power output, EV power, battery-power and battery-energy utilization, grid power, and grid price to show the merits of the proposed work. Full article
(This article belongs to the Special Issue Power Quality and Disturbances in Modern Distribution Networks)
Show Figures

Figure 1

18 pages, 533 KiB  
Article
Comparative Analysis of Deep Learning Models for Intrusion Detection in IoT Networks
by Abdullah Waqas, Sultan Daud Khan, Zaib Ullah, Mohib Ullah and Habib Ullah
Computers 2025, 14(7), 283; https://doi.org/10.3390/computers14070283 (registering DOI) - 17 Jul 2025
Abstract
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of [...] Read more.
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of detecting intrusions in IoT environments by evaluating the performance of deep learning (DL) models under different data and algorithmic conditions. We conducted a comparative analysis of three widely used DL models—Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Bidirectional LSTM (biLSTM)—across four benchmark IoT intrusion detection datasets: BoTIoT, CiCIoT, ToNIoT, and WUSTL-IIoT-2021. Each model was assessed under balanced and imbalanced dataset configurations and evaluated using three loss functions (cross-entropy, focal loss, and dual focal loss). By analyzing model efficacy across these datasets, we highlight the importance of generalizability and adaptability to varied data characteristics that are essential for real-world applications. The results demonstrate that the CNN trained using the cross-entropy loss function consistently outperforms the other models, particularly on balanced datasets. On the other hand, LSTM and biLSTM show strong potential in temporal modeling, but their performance is highly dependent on the characteristics of the dataset. By analyzing the performance of multiple DL models under diverse datasets, this research provides actionable insights for developing secure, interpretable IoT systems that can meet the challenges of designing a secure IoT system. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Enhanced Detection of Intrusion Detection System in Cloud Networks Using Time-Aware and Deep Learning Techniques
by Nima Terawi, Huthaifa I. Ashqar, Omar Darwish, Anas Alsobeh, Plamen Zahariev and Yahya Tashtoush
Computers 2025, 14(7), 282; https://doi.org/10.3390/computers14070282 (registering DOI) - 17 Jul 2025
Abstract
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat [...] Read more.
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat mitigation. We generate real DoS traffic, including normal, Internet Control Message Protocol (ICMP), Smurf attack, and Transmission Control Protocol (TCP) classes, and develop nine predictive algorithms, combining traditional machine learning and advanced deep learning techniques with optimization methods, including the synthetic minority sampling technique (SMOTE) and grid search (GS). Our findings reveal that while traditional machine learning achieved moderate accuracy, it struggled with imbalanced datasets. In contrast, Deep Neural Network (DNN) models showed significant improvements with optimization, with DNN combined with GS (DNN-GS) reaching 89% accuracy. However, we also used Recurrent Neural Networks (RNNs) combined with SMOTE and GS (RNN-SMOTE-GS), which emerged as the best-performing with a precision of 97%, demonstrating the effectiveness of combining SMOTE and GS and highlighting the critical role of advanced optimization techniques in enhancing the detection capabilities of IDS models for the accurate classification of various types of network traffic and attacks. Full article
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Xiaoxin Zhao, Donglin Li, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 (registering DOI) - 17 Jul 2025
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Research on an Algorithm of Power System Node Importance Assessment Based on Topology–Parameter Co-Analysis
by Guowei Sun, Xianming Sun, Junqi Geng and Guangyang Han
Energies 2025, 18(14), 3778; https://doi.org/10.3390/en18143778 (registering DOI) - 17 Jul 2025
Abstract
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating [...] Read more.
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating losses when cascading failures occur. The classical Local Link Similarity (LLS) algorithm in complex networks evaluates the importance of network nodes from a neighborhood topology perspective, but it suffers from issues such as the excessive weighting of node degrees and the neglect of electrical parameters. Based on the classical algorithm, this paper first develops the Improved Local Link Similarity (ILLS) algorithm by substituting alternative similarity metrics and comparatively evaluating their performance. Building upon the ILLS, we then propose the Electrical LLS (ELLS) algorithm by integrating node power flow and electrical coupling connectivity as multiplicative factors, with optimal combinations determined via simulation experiments. Compared to classical approaches, ELLS demonstrates superior adaptability to power grid contexts and delivers enhanced accuracy in power system node importance assessments. These algorithms are applied to rank the node importance in the IEEE 300-bus system. Their performance is evaluated using the loss-of-load-size metric, comparing ELLS, ILLS, and the classical algorithm. The results demonstrate that under the loss-of-load-size metric, the ELLS algorithm achieves approximately 25% higher accuracy compared to both the ILLS and the classical algorithm, validating its effectiveness. Full article
Show Figures

Figure 1

27 pages, 1666 KiB  
Article
Artificial Intelligence and Environmental Sustainability Playbook for Energy Sector Leaders
by Abdullah Abonamah, Salah Hassan and Tena Cale
Sustainability 2025, 17(14), 6529; https://doi.org/10.3390/su17146529 (registering DOI) - 17 Jul 2025
Abstract
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies [...] Read more.
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies for sustainability management with approaches suitable for industrial needs. The playbook provides an industry-specific framework along with strategies and AI-based solutions to help organizations overcome their sustainability challenges. Predictive analytics combined with smart grid management implemented through AI applications produced 15% less energy waste and reduced carbon emissions by 20% according to industry pilot project data. AI has proven its transformative capabilities by optimizing energy consumption while detecting inefficiencies to create both operational improvements and cost savings. The real-time monitoring capabilities of AI systems help companies meet strict environmental regulations and international climate goals by optimizing resource use and waste reduction, supporting circular economy practices for sustainable operations and enduring profitability. Leaders can establish impactful technology-based sustainability initiatives through the playbook which addresses the energy sector requirements for corporate goals and regulatory standards. Full article
Show Figures

Figure 1

16 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 (registering DOI) - 16 Jul 2025
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

Back to TopTop