Application of Deep Learning to Internet of Things Systems

A special issue of Computers (ISSN 2073-431X). This special issue belongs to the section "Internet of Things (IoT) and Industrial IoT".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 2713

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

In recent years, the evolution of Internet of Things (IoT) technologies has catalyzed an explosion of data from myriad IoT sensors, now installed globally, propelling the advancement of sophisticated services and applications across diverse sectors. Deep learning methodologies have emerged as key tools, elevating IoT functionalities from conventional desktop and mobile applications to resource-constrained IoT ecosystems. These strides have yielded measurable outcomes in domains ranging from image recognition and medical data analysis to language processing and smart forest, smart agriculture, smart city solutions.

This Special Issue delves deep into the continuing exploration and implementation of IoT technologies, with a keen focus on multimodal signal processing, sensor data extraction, data visualization, and allied subjects. Central objectives encompass probing the efficacy of deep neural network architectures in processing and amalgamating multimodal sensor inputs for diverse IoT applications, refining existing designs, and pioneering novel approaches to curtail resource consumption in deploying deep learning models on IoT devices. Additionally, it seeks to accurately compute reliability metrics for deep learning predictions within constrained computational frameworks and streamline the utilization of labeled IoT data for signal learning amid operational constraints.

Special topics of interest we invite to contribute, but are not confined to, the following:

  • Edge computing and its pivotal role in optimizing deep learning for IoT systems;
  • Federated learning approaches for collaborative model training in distributed IoT environments;
  • Explainable AI techniques aimed at augmenting the transparency and interpretability of deep learning models in IoT applications;
  • Security and privacy considerations inherent in deploying deep learning models on IoT devices;
  • Integration of reinforcement learning algorithms for fostering autonomous decision-making in IoT systems;
  • Energy-efficient deep learning implementations tailored for sustainable IoT applications;
  • Meta-learning strategies for enhancing adaptability and generalization of deep learning models in dynamic IoT environments;
  • Hybrid AI architectures combining symbolic reasoning with deep learning for robust IoT decision-making;
  • Bio-inspired computing paradigms for optimizing resource utilization and fault tolerance in IoT networks;
  • Human-in-the-loop approaches for leveraging human intelligence to improve IoT data annotation and model training;
  • Ethical considerations and responsible AI practices in the development and deployment of deep learning-based IoT solutions;
  • Innovative IoT applications in forestry management and agriculture, including precision farming, crop monitoring, and environmental conservation;
  • Real-time asset tracking and management systems for logistics and supply chain optimization;
  • Smart building solutions for energy management, occupancy monitoring, and predictive maintenance
  • Healthcare IoT applications for remote patient monitoring, personalized medicine, and medical device integration;
  • IoT-enabled transportation systems for traffic management, vehicle tracking, and autonomous vehicle control;
  • Retail IoT applications for inventory management, customer analytics, and personalized shopping experiences;
  • IoT-enabled utility infrastructure for smart grid management, water quality monitoring, and waste management optimization.

We invite researchers and practitioners to contribute their insights and research findings to this Special Issue, shedding light on critical aspects of deep learning applications for IoT systems. Submissions addressing sensor data integration, model efficiency, and reliability assessment in IoT contexts are highly encouraged. Join us in advancing the frontiers of deep learning in IoT ecosystems and shaping the future of intelligent and interconnected technologies.

Dr. Rytis Maskeliunas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Computers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Internet of Things
  • deep learning
  • data fusion
  • multimodal signal processing
  • data processing and visualization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Viewed by 295
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

18 pages, 533 KiB  
Article
Comparative Analysis of Deep Learning Models for Intrusion Detection in IoT Networks
by Abdullah Waqas, Sultan Daud Khan, Zaib Ullah, Mohib Ullah and Habib Ullah
Computers 2025, 14(7), 283; https://doi.org/10.3390/computers14070283 - 17 Jul 2025
Viewed by 294
Abstract
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of [...] Read more.
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of detecting intrusions in IoT environments by evaluating the performance of deep learning (DL) models under different data and algorithmic conditions. We conducted a comparative analysis of three widely used DL models—Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Bidirectional LSTM (biLSTM)—across four benchmark IoT intrusion detection datasets: BoTIoT, CiCIoT, ToNIoT, and WUSTL-IIoT-2021. Each model was assessed under balanced and imbalanced dataset configurations and evaluated using three loss functions (cross-entropy, focal loss, and dual focal loss). By analyzing model efficacy across these datasets, we highlight the importance of generalizability and adaptability to varied data characteristics that are essential for real-world applications. The results demonstrate that the CNN trained using the cross-entropy loss function consistently outperforms the other models, particularly on balanced datasets. On the other hand, LSTM and biLSTM show strong potential in temporal modeling, but their performance is highly dependent on the characteristics of the dataset. By analyzing the performance of multiple DL models under diverse datasets, this research provides actionable insights for developing secure, interpretable IoT systems that can meet the challenges of designing a secure IoT system. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

20 pages, 2154 KiB  
Article
Green Communication in IoT for Enabling Next-Generation Wireless Systems
by Mohammad Aljaidi, Omprakash Kaiwartya, Ghassan Samara, Ayoub Alsarhan, Mufti Mahmud, Sami M. Alenezi, Raed Alazaidah and Jaime Lloret
Computers 2024, 13(10), 251; https://doi.org/10.3390/computers13100251 - 2 Oct 2024
Cited by 8 | Viewed by 1579
Abstract
Recent developments and the widespread use of IoT-enabled technologies has led to the Research and Development (R&D) efforts in green communication. Traditional dynamic-source routing is one of the well-known protocols that was suggested to solve the information dissemination problem in an IoT environment. [...] Read more.
Recent developments and the widespread use of IoT-enabled technologies has led to the Research and Development (R&D) efforts in green communication. Traditional dynamic-source routing is one of the well-known protocols that was suggested to solve the information dissemination problem in an IoT environment. However, this protocol suffers from a high level of energy consumption in sensor-enabled device-to-device and device-to-base station communications. As a result, new information dissemination protocols should be developed to overcome the challenge of dynamic-source routing, and other similar protocols regarding green communication. In this context, a new energy-efficient routing protocol (EFRP) is proposed using the hybrid adopted heuristic techniques. In the densely deployed sensor-enabled IoT environment, an optimal information dissemination path for device-to-device and device-to-base station communication was identified using a hybrid genetic algorithm (GA) and the antlion optimization (ALO) algorithms. An objective function is formulated focusing on energy consumption-centric cost minimization. The evaluation results demonstrate that the proposed protocol outperforms the Greedy approach and the DSR protocol in terms of a range of green communication metrics. It was noticed that the number of alive sensor nodes in the experimental network increased by more than 26% compared to the other approaches and lessened energy consumption by about 33%. This leads to a prolonged IoT network lifetime, increased by about 25%. It is evident that the proposed scheme greatly improves the information dissemination efficiency of the IoT network, significantly increasing the network’s throughput. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

Back to TopTop