Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Triggering Mechanism of EL in ZnS:Cu
3.2. Voltage Distribution Simulation of Insulators and Insulator Strings
3.3. Dielectric Properties of the EL Coating
3.4. Experiment of the Insulators with EL Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, M.; Qin, L.; Deng, X.; Liu, K. MFI-YOLO: Multi-Fault Insulator Detection Based on an Improved YOLOv8. IEEE Trans. Power Deliv. 2024, 39, 168–179. [Google Scholar] [CrossRef]
- Hauschild, W. Critical Review of Voltages Applied for Quality-Acceptance and Diagnostic Field Tests on High-Voltage and Extra-High-Voltage Cable Systems. IEEE Electr. Insul. Mag. 2013, 29, 16–25. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Lin, W.; Wei, W. Transregional Electricity Transmission and Carbon Emissions: Evidence from Ultra-High Voltage Transmission Projects in China. Energy Econ. 2023, 123, 106751. [Google Scholar] [CrossRef]
- Sadykova, D.; Pernebayeva, D.; Bagheri, M.; James, A. IN-YOLO: Real-Time Detection of Outdoor High Voltage Insulators Using UAV Imaging. IEEE Trans. Power Deliv. 2020, 35, 1599–1601. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Li, B.; Zeng, J.; Wang, S. Discriminative Features Based Comprehensive Detector for Defective Insulators. Energy AI 2024, 17, 100387. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Sun, J.; Song, S.; Zheng, J.; Li, Z.; Huo, J.; Wang, Y.; Xiao, P.; Akram, S.; Qin, D. A Review on Surface Flashover Phenomena at DC Voltage in Vacuum and Compressed Gas. IEEE Trans. Dielect. Electr. Insul. 2022, 29, 1–14. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Ohki, Y.; Chen, G.; Gao, H.; Li, S. Surface Flashover in 50 Years: Theoretical Models and Competing Mechanisms. High Volt. 2023, 8, 853–877. [Google Scholar] [CrossRef]
- Meng, X.; Mei, H.; Yin, F.; Wang, L. The Development of the Streamer Discharge to Flashover Along the Dielectric Surfaces. IEEE Trans. Dielect. Electr. Insul. 2023, 30, 1733–1742. [Google Scholar] [CrossRef]
- Han, P.; Pan, Z.; Mao, S.; Ye, Y.; Tang, J.; Pan, C. Understanding the Effect of SiC/Epoxy Coating on Surface Flashover under DC Voltage: From Surface Charge Accumulation. J. Phys. D Appl. Phys. 2023, 56, 405106. [Google Scholar] [CrossRef]
- Mizuno, Y.; Maeda, M.; Kondo, K. Flashover Risk-Based Probabilistic Design of Transmission Line Insulators under Contamination Conditions. IEEE Trans. Power Deliv. 2023, 38, 3611–3620. [Google Scholar] [CrossRef]
- Zeng, Z.; Guo, P.; Zhang, R.; Zhao, Z.; Bao, J.; Wang, Q.; Xu, Z. Review of Aging Evaluation Methods for Silicone Rubber Composite Insulators. Polymers 2023, 15, 1141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, D.; Huang, X.; Li, C. Insulator Defect Detection with Deep Learning: A Survey. IET Gener. Trans. Dist. 2023, 17, 3541–3558. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Fan, Y.; Zhou, J.; Li, Z.; Xiao, S.; Zhang, X.; Wu, G. Optical Imaging Technology Application in Transmission Line Insulator Monitoring: A Review. IEEE Trans. Dielect. Electr. Insul. 2024, 31, 3120–3132. [Google Scholar] [CrossRef]
- Mantach, S.; Lutfi, A.; Moradi Tavasani, H.; Ashraf, A.; El-Hag, A.; Kordi, B. Deep Learning in High Voltage Engineering: A Literature Review. Energies 2022, 15, 5005. [Google Scholar] [CrossRef]
- Rathod, V.B.; Kumbhar, G.B.; Bhalja, B.R. Partial Discharge Detection and Localization in Power Transformers Based on Acoustic Emission: Theory, Methods, and Recent Trends. IETE Tech. Rev. 2022, 39, 540–552. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Y.; Shi, Z.; Li, B.; Zhang, X.; Xiao, S.; Wu, G. Discharge Characteristics of Roof Insulators in Strong Wind and Sand Environment: A Review. IEEE Trans. Dielect. Electr. Insul. 2024, 31, 3231–3242. [Google Scholar] [CrossRef]
- Faizol, Z.; Zubir, F.; Saman, N.M.; Ahmad, M.H.; Rahim, M.K.A.; Ayop, O.; Jusoh, M.; Majid, H.A.; Yusoff, Z. Detection Method of Partial Discharge on Transformer and Gas-Insulated Switchgear: A Review. Appl. Sci. 2023, 13, 9605. [Google Scholar] [CrossRef]
- Akbar, G.; Di Fatta, A.; Rizzo, G.; Ala, G.; Romano, P.; Imburgia, A. A Detailed Review of Partial Discharge Detection Methods for SiC Power Modules Under Square-Wave Voltage Excitation. Energies 2024, 17, 5793. [Google Scholar] [CrossRef]
- Kumar, H.; Shafiq, M.; Kauhaniemi, K.; Elmusrati, M. A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques. Energies 2024, 17, 1142. [Google Scholar] [CrossRef]
- Meitei, S.N. Partial Discharge Detection Using Piezoelectric Sensors on Power Transformer: A Review. IEEE Sens. J. 2024, 24, 13730–13742. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, Y.; Cao, F.; Wang, P.; Ke, J.; Liu, J.; Nie, Y.; Li, G.; Wei, Y.; Lu, G.; et al. Space Charge-Induced Electrofluorochromic Behavior for C12-BTBT-Based Thin-Film Devices. J. Mater. Chem. C 2025, 10, 1039. [Google Scholar]
- Del Prado Santamaría, R.; Dhimish, M.; Dos Reis Benatto, G.A.; Kari, T.; Poulsen, P.B.; Spataru, S.V. From Indoor to Daylight Electroluminescence Imaging for PV Module Diagnostics: A Comprehensive Review of Techniques, Challenges and AI-Driven Advancements. Micromachines 2025, 16, 437. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, G.; Wang, S. Intrinsically Stretchable Electroluminescent Materials and Devices. CCS Chem. 2024, 6, 1360–1379. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, Y.; Cao, L.; Lu, Y.; Tang, Y.; Zhang, K.; Ren, H.; Xie, F.; Li, Y.; Tang, J. Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky-Blue Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2023, 33, 2301452. [Google Scholar] [CrossRef]
- Bai, W.; Shi, S.; Lin, T.; Zhou, T.; Xuan, T.; Xie, R.-J. Near-Unity Cyan-Green Emitting Lead-Free All-Inorganic Cesium Copper Chloride Phosphors for Full-Spectrum White Light-Emitting Diodes. Adv. Photon. Res. 2021, 2, 200158. [Google Scholar] [CrossRef]
- Bastami, N.; Soheyli, E.; Arslan, A.; Sahraei, R.; Yazici, A.F.; Mutlugun, E. Nanowire-Shaped MoS2@MoO3 Nanocomposites as a Hole Injection Layer for Quantum Dot Light-Emitting Diodes. ACS Appl. Electron. Mater. 2022, 4, 3849–3859. [Google Scholar] [CrossRef]
- Cai, T.; Li, F.; Jiang, Y.; Liu, X.; Xia, X.; Wang, X.; Peng, J.; Wang, L.; Daoud, W.A. In Situ Inclusion of Thiocyanate for Highly Luminescent and Stable CH3NH3PbBr3 Perovskite Nanocrystals. Nanoscale 2019, 11, 1319–1325. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Tian, X.; Zhang, T.; Wang, Y.; Dou, C. Diradical B/N-Doped Polycyclic Hydrocarbons. Angew. Chem. Int. Edit. 2023, 62, e202217470. [Google Scholar] [CrossRef]
- Chun, F.; Wang, F. Recent Advances in Perovskite-Based Flexible Electroluminescent Devices. ACS Nano 2024, 18, 25939–25965. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Lübben, J.F. Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review. Gels 2023, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Q.; Cai, X.; Li, C.; Jiang, S.; Wang, Y. Frontier Molecular Orbital Engineering: Constructing Highly Efficient Narrowband Organic Electroluminescent Materials. Angew Chem. Int. Ed. 2023, 62, e202312451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qiao, N.; Dong, S.; Qu, G.; Chen, Y.; Lu, W.; Qin, Z.; Li, D.; Wu, K.; Nie, Y.; et al. Side-Chain Engineering of Polystyrene Dielectrics Toward High-Performance Photon Memories and Artificial Synapses. Chem. Mater. 2022, 34, 6505–6517. [Google Scholar] [CrossRef]
- Jia, Y.; Ji, S.; Bu, Z.; Yang, X.; Li, S.; Zhu, L. An Insulation Monitoring Method for Transformer Windings Based on Electroluminescence Effect. IEEE Trans. Dielect. Electr. Insul. 2023, 30, 1294–1301. [Google Scholar] [CrossRef]
- Ji, S.; Jia, Y.; Yang, X.; Liu, Z.; Zhu, L. A Method for Measuring Electric Field Distribution Along Insulator Surfaces Based on Electroluminescence Effect and Its Image Processing Algorithm. IEEE Trans. Dielect. Electr. Insul. 2022, 29, 939–947. [Google Scholar] [CrossRef]
- Xia, B.; Zhu, M.-X.; Guo, X.-B.; Qi, X.-W.; Yao, H.-B.; Xing, Z.-H. High Permittivity Electroluminescence Coating for Improving Flashover Strength and Visualizing Surface Defects. J. Phys. D Appl. Phys. 2025, 58, 055503. [Google Scholar] [CrossRef]
- Lai, Y.-S.; Hsieh, C.-C.; Liao, T.-W.; Huang, C.-Y.; Kuo, C.-F.J. Deep Learning-Based Automatic Defect Detection of Photovoltaic Modules in Infrared, Electroluminescence, and Red–Green–Blue Images. Energ. Convers. Manag. 2025, 332, 119783. [Google Scholar] [CrossRef]
- Pandey, T.; Singh, A.; Kaundal, R.S.; Pandey, V. Cation Exchange Doping by Transition and Non-Transition Metals: Embracing Luminescence for Band Gap Tunability in a ZnS Lattice. New J. Chem. 2024, 48, 1009–1035. [Google Scholar] [CrossRef]
- Wang, J.; Yu, J.; Wang, X.; Wang, L.; Li, B.; Shen, D.; Kang, Q.; Chen, L. Functional ZnS:Mn(II) Quantum Dot Modified with L-Cysteine and 6-Mercaptonicotinic Acid as a Fluorometric Probe for Copper(II). Microchim. Acta 2018, 185, 420. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Yao, Y.; Ding, Y.; Tan, Y.; Hu, G.; Zhang, S.; Zeng, L. A Stimulus-Responsive Optoelectronic Skin from Photonic Crystal. Adv. Opt. Mater. 2025, 13, 2500094. [Google Scholar] [CrossRef]
- Uckol, H.I.; Karaca, B.; Ilhan, S. DC and AC Electric Field Analysis and Experimental Verification of a Silicone Rubber Insulator. Electr. Eng. 2020, 102, 503–514. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, X.; Hu, J.; Wang, H.; Yang, H.; Li, Q.; He, J.; Xu, Z.; Li, X. Grading of Electric Field Distribution of AC Polymeric Outdoor Insulators Using Field Grading Material. IEEE Trans. Dielect. Electr. Insul. 2019, 26, 1253–1260. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, Y.; Li, S.; Wei, P.; Li, D.; Liu, B.; Cui, D.; Zhang, Z.; Li, G.; Nie, Y.; et al. Soluble Poly(4-Fluorostyrene): A High-Performance Dielectric Electret for Organic Transistors and Memories. Mater. Horiz. 2020, 7, 1861–1871. [Google Scholar] [CrossRef]
- Starkova, O.; Gaidukovs, S.; Platnieks, O. Prediction of Viscoelastic Properties of Epoxy/Graphene Oxide Nanocomposites: Time-Temperature-Water Ageing Superposition. Polym. Degrad. Stabil. 2023, 214, 110400. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Wang, Q.; Deng, Y.; Yap, M.; Chern, W.K.; Oh, J.T.; Chen, Z. Degradation and Lifetime Prediction of Epoxy Composite Insulation Materials under High Relative Humidity. Polymers 2023, 15, 2666. [Google Scholar] [CrossRef]
- Sukesh Babu, M.; Sarathi, R.; Imai, T.; Tanaka, T. Influence of Gamma Irradiation and Water Aging on the Space Charge Characteristics of Epoxy Micro-Nano Composites. Polymers 2021, 13, 964. [Google Scholar] [CrossRef]
Material | Air | Ceramic | Cement | Steel |
---|---|---|---|---|
Relative dielectric constant | 1 | 6 | 14 | 1 |
Electrical conductivity | 1 × 10−4 | 1 × 10−8 | 1 × 10−9 | 1 × 107 |
Electroluminous Brightness (cd/mm2) | Voltage Subjected to the Coating (kV) | Simulated Voltage Subjected to the Insulator (kV) | Actual Voltage Subjected to the Insulator (kV) | Error Rate (%) |
---|---|---|---|---|
3.16 | 0.45 | 1.81 | 2 | 9.67 |
5.82 | 1.11 | 4.42 | 4 | 10.45 |
13.56 | 1.38 | 5.46 | 6 | 9.38 |
25.94 | 2.18 | 8.92 | 8 | 11.54 |
38.65 | 2.30 | 9.24 | 10 | 7.63 |
51.23 | 2.76 | 11.21 | 12 | 6.59 |
58.76 | 3.78 | 15.18 | 14 | 8.42 |
64.52 | 3.71 | 14.86 | 16 | 7.15 |
69.84 | 4.76 | 19.24 | 18 | 6.87 |
73.21 | 5.18 | 21.19 | 20 | 5.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Jiang, Y.; Wang, P.; Chen, D.; Han, Y.; Song, J.; Zhu, Y.; Li, S. Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems. Appl. Sci. 2025, 15, 7965. https://doi.org/10.3390/app15147965
Nie Y, Jiang Y, Wang P, Chen D, Han Y, Song J, Zhu Y, Li S. Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems. Applied Sciences. 2025; 15(14):7965. https://doi.org/10.3390/app15147965
Chicago/Turabian StyleNie, Yongjie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu, and Shengtao Li. 2025. "Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems" Applied Sciences 15, no. 14: 7965. https://doi.org/10.3390/app15147965
APA StyleNie, Y., Jiang, Y., Wang, P., Chen, D., Han, Y., Song, J., Zhu, Y., & Li, S. (2025). Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems. Applied Sciences, 15(14), 7965. https://doi.org/10.3390/app15147965