Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,871)

Search Parameters:
Keywords = Fe(II)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4090 KiB  
Article
The Behavior of Divalent Metals in Double-Layered Hydroxides as a Fenton Bimetallic Catalyst for Dye Decoloration: Kinetics and Experimental Design
by Edgar Oswaldo Leyva Cruz, Diana Negrete Godínez, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(7), 687; https://doi.org/10.3390/catal15070687 - 16 Jul 2025
Abstract
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal [...] Read more.
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal treatment, were tested in both hydroxide and oxide forms under varying agitation conditions (0 and 280 rpm). A 22 × 3 factorial design was used to analyze the effect of the divalent metal type, catalyst phase, and stirring. The Mg/Fe oxide, with the highest BET surface area (144 m2/g) and crystallite size (59.7 nm), showed superior performance—achieving up to 98% decoloration of crystal violet and 97% of methyl blue within 1 h. The kinetic analysis revealed pseudo-second-order and pseudo-first-order fits for crystal violet and methyl blue, respectively. These findings suggest that LDH-based catalysts provide a fast, low-cost, and effective option for dye removal in aqueous systems. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

30 pages, 7220 KiB  
Article
Automated Hyperspectral Ore–Waste Discrimination for a Gold Mine: Comparative Study of Data-Driven and Knowledge-Based Approaches in Laboratory and Field Environments
by Mehdi Abdolmaleki, Saleh Ghadernejad and Kamran Esmaeili
Minerals 2025, 15(7), 741; https://doi.org/10.3390/min15070741 - 16 Jul 2025
Abstract
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral [...] Read more.
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral complexity inherent in real-world mining environments. In this study, we compare the performance of two approaches for ore–waste discrimination in both laboratory and actual mine site conditions: (i) a data-driven feature extraction (FE) method and (ii) a knowledge-based mineral mapping method. Rock samples, including ore and waste from an open-pit gold mine, were obtained and scanned using a hyperspectral imaging system under laboratory conditions. The FE method, which quantifies the frequency absorption peaks at different wavelengths for a given rock sample, was used to train three discriminative models using the random forest classifier (RFC), support vector classification (SVC), and K-nearest neighbor classifier (KNNC) algorithms, with RFC achieving the highest performance with an F1-score of 0.95 for the laboratory data. The mineral mapping method, which quantifies the presence of pyrite, calcite, and potassium feldspar based on prior geochemical analysis, yielded an F1-score of 0.78 for the ore class using the RFC algorithm. In the next step, the performance of the developed discriminative models was tested using hyperspectral data of two muck piles scanned in the open-pit gold mine. The results demonstrated the robustness of the mineral mapping method under field conditions compared to the FE method. These results highlight hyperspectral imaging as a valuable tool for improving ore-sorting efficiency in mining operations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

23 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 37
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

15 pages, 3736 KiB  
Article
Molecular Characterization of a Restriction Endonuclease PsaI from Pseudomonas anguilliseptica KM9 and Sequence Analysis of the PsaI R-M System
by Beata Furmanek-Blaszk, Iwona Mruk and Marian Sektas
Int. J. Mol. Sci. 2025, 26(14), 6548; https://doi.org/10.3390/ijms26146548 - 8 Jul 2025
Viewed by 138
Abstract
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence [...] Read more.
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence of Co2+, Mg2+, and Zn2+ and reached a maximal level of activity between 2.5 and 10 mM while its activity was significantly decreased in the presence of Ca2+, Fe2+, Mn2+, and Ni2+. Moreover, we found that the purified R.PsaI did not require NaCl for enzyme activity. Restriction cleavage analysis followed by sequencing confirmed 5′-AAGCTT-3′ as the recognition site. The genes for restriction–modification system PsaI were identified and characterized. Downstream of the psaIM gene, we noticed an ORF that shares extensive similarity with recombinase family protein specifically involved in genome rearrangements. Sequence analysis revealed that the PsaI R-M gene complex showed striking nucleotide sequence similarity (>98%) with the genes of the PanI R-M system from a P. anguilliseptica MatS1 strain identified in a soil sample from Sri Lanka. Full article
(This article belongs to the Special Issue Genetic Engineering in Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 2180 KiB  
Article
Novel Magnetically Recoverable Amino-Functionalized MIL-101(Fe) Composite with Enhanced Adsorption Capacity for Pb(II) and Cd(II) Ions
by Claudia Maria Simonescu, Daniela C. Culita, Gabriela Marinescu, Irina Atkinson, Virgil Marinescu, Ovidiu Oprea and Nicolae Stanica
Molecules 2025, 30(13), 2879; https://doi.org/10.3390/molecules30132879 - 7 Jul 2025
Viewed by 222
Abstract
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This [...] Read more.
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This hybrid composite retains the high adsorption capacity of NH2-MIL-101(Fe) while benefiting from the easy magnetic separation enabled by Fe3O4 nanoparticles. The mesoporous silica forms a protective porous coating around the magnetic nanoparticles, significantly enhancing its chemical stability and preventing clumping. Beyond protection, the mesoporous silica layer provides a high-surface-area scaffold that promotes the uniform in situ growth of NH2-MIL-101(Fe). Functionalization of the silica surface with chloride groups enables strong electrostatic interactions between the magnetic component and metal organic framework (MOF), ensuring a homogeneous and stable hybrid structure. The new composite’s capacity to remove Pb(II) and Cd(II) ions from aqueous solutions was systematically investigated. The adsorption data showed a good fit with the Langmuir isotherm model for both ions, the maximum adsorption capacities calculated being 214.6 mg g−1 for Pb(II) and 181.6 mg g−1 Cd(II). Furthermore, the kinetic behavior of the adsorption process was accurately described by the pseudo-second-order model. These findings confirm the effectiveness of this composite for the removal of Pb(II) and Cd(II) ions from aqueous solutions, demonstrating its potential as an efficient material for environmental remediation. The combination of magnetic recovery, high adsorption capacity, and stability makes this novel composite a promising candidate for heavy metal removal applications in water treatment processes. Full article
Show Figures

Figure 1

10 pages, 1819 KiB  
Article
Design and Synthesis of Fe3O4-Loaded Polymer Microspheres with Controlled Morphology: Section II Fabrication of Walnut-like Superparamagnetic Polymer Microspheres
by Florence Acha, Talya Scheff, Nathalia DiazArmas and Jinde Zhang
Polymers 2025, 17(13), 1876; https://doi.org/10.3390/polym17131876 - 5 Jul 2025
Viewed by 327
Abstract
A simple and innovative synthesis strategy was established to produce polymer microspheres with a distinctive walnut-like morphology, incorporating Fe3O4 nanoparticles within their structure. This was achieved through γ-ray-initiated mini-emulsion polymerization. To ensure high encapsulation efficiency, the surface of the Fe [...] Read more.
A simple and innovative synthesis strategy was established to produce polymer microspheres with a distinctive walnut-like morphology, incorporating Fe3O4 nanoparticles within their structure. This was achieved through γ-ray-initiated mini-emulsion polymerization. To ensure high encapsulation efficiency, the surface of the Fe3O4 nanoparticles was chemically altered to shift their wettability from hydrophilic to hydrophobic, enabling uniform dispersion within the monomer phase before polymerization. The formation of the walnut-like architecture was found to be significantly influenced by both the polymerization dynamics and phase separation, as well as the shrinkage of the crosslinked polymer network formed between the monomer and the resulting polymer. Divinylbenzene (DVB) was chosen as the monomer due to its ability to generate a mechanically stable polymer framework. The γ-ray irradiation effectively initiated polymerization while preserving structural coherence. A detailed analysis using FTIR, SEM, and TEM confirmed the successful fabrication of the Fe3O4-loaded polymer microspheres with their characteristic textured surface. Moreover, magnetic characterization via vibrating sample magnetometry (VSM) indicated pronounced superparamagnetic behavior and strong magnetic responsiveness, highlighting the potential of these microspheres for advanced biomedical applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

20 pages, 1055 KiB  
Article
Reduction-Driven Mobilization of Structural Fe in Clay Minerals with High Fe Content
by Anke Neumann, Luiza Notini, W. A. P. Jeewantha Premaratne, Drew E. Latta and Michelle M. Scherer
Minerals 2025, 15(7), 713; https://doi.org/10.3390/min15070713 - 4 Jul 2025
Viewed by 238
Abstract
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this [...] Read more.
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this concept. Here, we investigate how Fe reduction and re-oxidation affect the propensity of Fe to be released from the clay mineral structure and use selective sequential extractions in combination with Mössbauer spectroscopy. Negligible amounts of Fe were released in the sequential extraction of high Fe content clay minerals NAu-1 and NAu-2. Once aqueous Fe(II) was added as a reductant, the extraction procedure recovered the initially added Fe amount and up to 30% of the Fe from the clay mineral structure as both Fe(II) and Fe(III). Similar extents of Fe mobilization were found for clay minerals partly reduced (7%–20%) with dithionite, suggesting that mobilization was reduction-induced and independent of the source of reduction equivalents (Fe(II), dithionite). Although higher Fe reduction extents mobilized more structural Fe, i.e., >90% in fully reduced clay minerals, re-oxidation largely reverted the reduction-induced Fe mobilization in clay minerals. Our finding of reduction-driven Fe mobilization provides a plausible explanation for conflicting reports on Fe release from clay minerals and how extensive Fe atom exchange between aqueous and clay mineral Fe occurs. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Figure 1

31 pages, 9591 KiB  
Article
Deformable Fricke-XO-Gelatin Radiochromic Dosimeter of Ionizing Radiation and Its Applications in Quality Assurance Tests for Radiation Therapy
by Michał Piotrowski, Piotr Maras, Zbigniew Stempień, Radosław Wach and Marek Kozicki
Materials 2025, 18(13), 3135; https://doi.org/10.3390/ma18133135 - 2 Jul 2025
Viewed by 303
Abstract
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The [...] Read more.
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The dosimeter reacts to ionizing radiation by changing color as a result of the formation of complexes of Fe3+ and XO molecules. It was characterized in terms of thermal and chemical stability and mechanical properties. The presence of sorbitol improved the mechanical and thermal properties of the dosimeter. The dosimeter maintains chemical stability, enabling its use in dosimetric applications, for at least six weeks. The dose–response characteristics of the dosimeter are discussed and indicate a dynamic dose–response of the dosimeter (up to saturation) of about 20 Gy and a linear dose–response of about 12.5 Gy. The following applications of the dosimeter are discussed: (i) as a 2D dosimeter in a plastic container for performing a coincidence test of radiation and mechanical isocenters of a medical accelerator, and (ii) for in vivo dosimetry as a 2D dosimeter alone and simultaneously as a bolus and a 2D dosimeter. Research has shown that the dosimeter has promise in many applications. Full article
Show Figures

Figure 1

27 pages, 3223 KiB  
Article
Chloroprene and Butadiene Rubber (CR/BR) Blends Cross-Linked with Metal Oxides: INFLUENCE of Vulcanization Temperature on Their Rheological, Mechanical, and Thermal Properties
by Aleksandra Smejda-Krzewicka and Konrad Mrozowski
Molecules 2025, 30(13), 2780; https://doi.org/10.3390/molecules30132780 - 27 Jun 2025
Viewed by 216
Abstract
This paper aimed to evaluate the effect of cross-linking temperature on the rheological, mechanical, and thermal properties of CR/BR compositions cross-linked with zinc oxide, iron(III) oxide, or copper(II) oxide. Properties of CR/BR compounds were studied at four temperatures: 140, 160, 180, and 200 [...] Read more.
This paper aimed to evaluate the effect of cross-linking temperature on the rheological, mechanical, and thermal properties of CR/BR compositions cross-linked with zinc oxide, iron(III) oxide, or copper(II) oxide. Properties of CR/BR compounds were studied at four temperatures: 140, 160, 180, and 200 °C. The lowest activation energy of vulcanization was shown by blends cross-linked with ZnO, and the highest activation energy of vulcanization was shown by samples with Fe2O3. Blends cured with ZnO or Fe2O3 showed higher cross-linking activity than CuO. Higher temperatures enhanced the degree of cross-linking in the CR/BR composite cured with ZnO or CuO but slightly reduced it for the CR/BR/Fe2O3 vulcanizates. The highest tensile strength was observed for the CR/BR/Fe2O3 product. However, compositions cured with ZnO exhibited the best aging resistance. The CR/BR compounds cured with ZnO at high temperatures had the highest tear strength (16.8 N/mm), while samples containing CuO as a curing agent showed declining tear strength with temperature. DSC confirmed a single glass transition (~36 °C), indicating good elastomers dispersion. Infrared and SEM analyses confirmed effective cross-linking and blend compatibility. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

3 pages, 1926 KiB  
Correction
Correction: Mubarak et al. Enhanced Performance of Chitosan via a Novel Quaternary Magnetic Nanocomposite Chitosan/Grafted Halloysitenanotubes@ZnγFe3O4 for Uptake of Cr (III), Fe (III), and Mn (II) from Wastewater. Polymers 2021, 13, 2714
by Mahmoud F. Mubarak, Ahmed H. Ragab, Rasha Hosny, Inas A. Ahmed, Hanan A. Ahmed, Salah M. El-Bahy and Abeer El Shahawy
Polymers 2025, 17(13), 1759; https://doi.org/10.3390/polym17131759 - 26 Jun 2025
Viewed by 170
Abstract
In the original publication, there was a mistake in Figures 5 and 8 as published [...] Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 5

31 pages, 34129 KiB  
Article
Prediction of Buried Cobalt-Bearing Arsenides Using Ionic Leach Geochemistry in the Bou Azzer-El Graara Inlier (Central Anti-Atlas, Morocco): Implications for Mineral Exploration
by Yassine Lmahfoudi, Houssa Ouali, Said Ilmen, Zaineb Hajjar, Ali El-Masoudy, Russell Birrell, Laurent Sapor, Mohamed Zouhair and Lhou Maacha
Minerals 2025, 15(7), 676; https://doi.org/10.3390/min15070676 - 24 Jun 2025
Viewed by 521
Abstract
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to [...] Read more.
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to the Ouarzazate group outcrop (Ediacarian age): they are composed of volcanic rocks (ignimbrite, andesite, rhyolite, dacite, etc.) covered by the Adoudou detritic formation in angular unconformity. Given the absence of serpentinite outcrops, exploration investigation in this area has been very limited. This paper aims to use ionic leach geochemistry (on samples of soil) to detect the presence of Co-bearing arsenides above hidden ore deposits in this unexplored area of the Bou Azzer inlier. In addition, a detailed structural analysis allowed the identification of four families of faults and fractures with or without filling. Three directional major fault systems of several kilometers in length and variable orientation in both the Cryogenian basement and the Ediacaran cover have been identified: (i) ENE–WSW, (ii) NE–SW, and (iii) NW–SE. Several geochemical anomalies for Co, As, Ni, Ag, and Cu are aligned along three main directions, including NE–SW, NW–SE, and ENE–WSW. They are particularly well-defined in the western zone but are only minor in the central and eastern zones. Some of these anomalies correlate with the primary structural features observed in the studied area. These trends are consistent with those known under mining exploitation in nearby ore deposits, supporting the potential for similar mineralization in the ABED. Based on structural analysis and ionic leach geochemistry, drilling programs were conducted in the study area, confirming the continuity of serpentinites at depth beneath the Ediacaran cover and the presence of Co–Fe-bearing arsenide ores. This validates the ionic geochemistry technique as a reliable method for exploring buried ore deposits. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

11 pages, 2330 KiB  
Article
Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Separations 2025, 12(6), 167; https://doi.org/10.3390/separations12060167 - 18 Jun 2025
Viewed by 329
Abstract
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing [...] Read more.
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing additives that can overcome some traditional recycling methods of metal ions from e-waste, used in our works from last year, are presented. The unique chemical environments of ILs and DESs, with the application of low-temperature extraction procedures, are important environmental aspects known as “Green Methods”. A closed-loop system for recycling zinc and manganese from the “black mass” (BM) of waste, Zn-MnO2 batteries, is presented. The leaching process achieves a high efficiency and distribution ratio using the composition of two solvents (Cyanex 272 + diethyl phosphite (DPh)) for Zn(II) extraction. High extraction efficiency with 100% zinc and manganese recovery is also achieved using DESs (cholinum chloride/lactic acid, 1:2, DES 1, and cholinum chloride/malonic acid, 1:1, DES 2). New, greener recycling approaches to metal extraction from the BM of spent Li-ion batteries are presented with ILs ([N8,8,8,1][Cl], (Aliquat 336), [P6,6,6,14][Cl], [P6,6,6,14][SCN] and [Benzet][TCM]) eight DESs, Cyanex 272 and D2EHPA. A high extraction efficiency of Li(I) (41–92 wt%) and Ni(II) (37–52 wt%) using (Cyanex 272 + DPh) is obtained. The recovery of Ni(II) and Cd(II) from the BM of spent Ni-Cd batteries is also demonstrated. The extraction efficiency of DES 1 and DES 2, contrary to ILs ([P6,6,6,14][Cl] and [P6,6,6,14][SCN]), is at the level of 30 wt% for Ni(II) and 100 wt% for Cd(II). In this mini-review, the option to use ILs, DESs and Cyanex 272 for the recovery of valuable metals from end-of-life WPCBs is presented. Next-generation recycling technologies, in contrast to the extraction of metals from acidic leachate preceded by thermal pre-treatment or from solid material only after thermal pre-treatment, have been developed with ILs and DESs using the ABS method, as well as Cyanex 272 (only after the thermal pre-treatment of WPCBs), with a process efficiency of 60–100 wt%. In this process, four new ILs are used: didecyldimethylammonium propionate, [N10,10,1,1][C2H5COO], didecylmethylammonium hydrogen sulphate, [N10,10,1,H][HSO4], didecyldimethylammonium dihydrogen phosphate, [N10,10,1,1][H2PO4], and tetrabutylphosphonium dihydrogen phosphate, [P4,4,4,4][H2PO4]. The extraction of Cu(II), Ag(I) and other metals such as Al(III), Fe(II) and Zn(II) from solid WPCBs is demonstrated. Various additives are used during the extraction processes. The Analyst 800 atomic absorption spectrometer (FAAS) is used for the determination of metal content in the solid BM. The ICP-OES method is used for metal analysis. The obtained results describe the possible application of ILs and DESs as environmental media for upcycling spent electronic wastes. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

14 pages, 2451 KiB  
Article
Mechanical and Electronic Properties of Fe(II) Doped Calcite: Ab Initio Calculations
by Zhangci Wu, Xiao Zhi, Fujie Jia, Jiayuan Ye and Neng Li
Crystals 2025, 15(6), 566; https://doi.org/10.3390/cryst15060566 - 16 Jun 2025
Viewed by 256
Abstract
Calcite (CaCO3), a widely used mineral in materials science and environmental engineering, exhibits excellent stability but has limited mechanical strength and a wide electronic band gap, restricting its broader functional applications. To address these limitations, we systematically investigated the effects of [...] Read more.
Calcite (CaCO3), a widely used mineral in materials science and environmental engineering, exhibits excellent stability but has limited mechanical strength and a wide electronic band gap, restricting its broader functional applications. To address these limitations, we systematically investigated the effects of Fe(II) doping on the electronic and mechanical properties of calcite using density functional theory calculations. The results reveal that Fe atoms preferentially form a layered distribution within the lattice and significantly alter the electronic structure, notably reducing the band gap through the introduction of Fe 3d-derived states near the Fermi level. Concurrently, the incorporation of Fe strengthens the elastic constants and enhances the shear resistance, especially in directions aligned with the dopant layering. These improvements are attributed to the strong Fe-O bonding and localized lattice distortions. Furthermore, the interplay between the dopant distribution and magnetic ordering suggests that spin polarization could serve as a potential handle for property tuning. This study highlights Fe-doped calcite as a promising candidate for functional mineral-based materials and provides theoretical insights into the magnetic and structural design of carbonate systems. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Crystal Materials)
Show Figures

Figure 1

18 pages, 4237 KiB  
Article
Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation
by Keyi Xiang, Ruosong Xie, Guangfei Qu, Zhishuncheng Li, Yongheng Yuan, Rui Xu and Chenyang Zhao
Sustainability 2025, 17(12), 5445; https://doi.org/10.3390/su17125445 - 13 Jun 2025
Viewed by 287
Abstract
Heavy metals in lead refining waste slag pose persistent environmental risks, challenging conventional treatment methods that struggle to balance long-term stabilization with resource recovery potential. To address this issue, we developed a sustainable stabilization strategy. The simultaneous and long-lasting stabilization of Zn, Pb, [...] Read more.
Heavy metals in lead refining waste slag pose persistent environmental risks, challenging conventional treatment methods that struggle to balance long-term stabilization with resource recovery potential. To address this issue, we developed a sustainable stabilization strategy. The simultaneous and long-lasting stabilization of Zn, Pb, and As heavy metals in lead refining waste slag was achieved by using an Fe-S(II) stabilizer, and the leaching toxicity of Zn, As and Pb was less than 1 mg/L, which is lower than the concentration limit of the Identification standards for hazardous wastes–Identification for extraction toxicity (GB5085.3-2007). The samples were analyzed by characterization before and after stabilization, and it was found that Fe-S(II) formed a protective layer of sulfide capsule on the surface of the samples. This stabilization mechanism, which has been termed the “nucleation-capture-sulfide encapsulation” process, involves after the oxidation of Fe0 to form a core–shell structure for trapping metal ions, where the external oxide layer undergoes mineralization via S(II) sulfide reduction. This microencapsulation-based passivation not only ensures long-term heavy metal immobilization but also preserves the slag’s potential for secondary resource recovery, aligning with circular economy principles. By minimizing environmental leakage risks while retaining metal reclamation feasibility, this approach offers a green and sustainable solution for heavy-metal-laden industrial waste management. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Graphical abstract

17 pages, 1489 KiB  
Article
Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics
by Buyun Du, Jiasai Fei, Laiyong You, Jing Zhou and Jun Zhou
Agronomy 2025, 15(6), 1423; https://doi.org/10.3390/agronomy15061423 - 11 Jun 2025
Viewed by 672
Abstract
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w [...] Read more.
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w/w) were subjected to 40 day anaerobic and 20 day aerobic incubation. The results demonstrated that NCC and C+P elevated the soil pH by 1.35–1.39 and 0.72–1.01 units during the anaerobic and aerobic phases, respectively. These amendments suppressed Fe(II) and Mn(II) release by 41–75%, correlating with reduced Cd bioavailability. While nanomaterials minimally influenced Cd speciation during flooding, aerobic conditions triggered a marked shift: residual Cd fractions increased by 80.8–116.4% under NCC, driven by CdCO3 precipitation and phosphate complexation. Cd release rates decreased by 53.6–66.8% in NCC and C+P treatments during oxidation. Microbial analysis revealed diminished bacterial diversity but enriched Firmicutes (up to 58.9%), which positively correlated with pH and residual Cd. Redundancy analysis identified pH and Fe/Mn dynamics as key regulators of the microbial community structure. NCC emerged as the most effective amendment. This study highlights the potential of NCC-based strategies for mitigating Cd risks in acidic paddy soils, particularly during post-flooding drainage. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

Back to TopTop