Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
Abstract
:1. Introduction
2. Methods Used in the Leaching Processes with ILs and DESs
2.1. Effects of the Extraction from Different Sources
2.2. Reaction Mechanism
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Kolasa, D.; Luchcińska, S.; Lach, J.; Wróbel, K.; Domańska, U. Recovery of zinc and manganese from ”black mass” of waste Zn-MnO2 alkaline batteries by solvent extraction technique with ionic liquids, DESs and organophosphorous-based acids. J. Mol. Liq. 2021, 338, 116590. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Kolasa, D.; Luchcińska, S.; Domańska, U. Separation of cobalt, lithium and nickel from the ”black mass” of waste Li-ion batteries by ionic liquids, DESs and organophosphorous-based acids extraction. J. Mol. Liq. 2021, 343, 117694. [Google Scholar] [CrossRef]
- Domańska, U.; Wiśniewska, A.; Dąbrowski, Z.; Kolasa, D.; Wróbel, K.; Lach, J. Recovery of metals from the “Black Mass” of waste portable Li-Ion batteries with choline chloride-based deep eutectic solvents and bi-functional ionic liquids by solvent extraction. Molecules 2024, 29, 3142. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Kolasa, D.; Lach, J.; Wróbel, K.; Domańska, U. New method for recovery of nickel and cadmium from the “black mass” of spent Ni-Cd batteries by solvent extraction. J. Mol. Liq. 2022, 357, 119087. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Lach, J.; Wróbel, K.; Kolasa, D.; Domańska, U. Recovery of metals from electronic waste—Printed circuit boards by ionic liquids, DESs and organophosphorous-based acid extraction. Molecules 2022, 27, 984. [Google Scholar] [CrossRef]
- Domańska, U.; Wiśniewska, A.; Dąbrowski, Z. Recovery of strategic metals from waste printed circuit boards with deep eutectic solvents and ionic liquids. Processes 2024, 12, 530. [Google Scholar] [CrossRef]
- Feng, F.; Sun, Y.; Rui, J.; Yu, L.; Liu, J.; Zhang, N.; Zhao, M.; Wei, L.; Lu, C.; Zhao, J.; et al. Study of the “Oxidation-Complexation” coordination composite ionic liquid system for dissolving precious metal. Appl. Sci. 2020, 10, 3625. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Extraction of precious metals from waste printed circuit boards using cyanide-free alkaline glycine solution in the presence of an oxidant. Miner. Eng. 2022, 181, 107501. [Google Scholar] [CrossRef]
- Han, Y.; Yi, X.; Wang, R.; Huang, J.; Chen, M.; Sun, Z.; Sun, S.; Shu, J. Copper extraction from waste printed circuit boards by glycine. Sep. Purif. Technol. 2020, 253, 117463. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Domańska, U. Liquid-liquid extraction of cobalt(II) and zinc(II) from aqueous solutions using novel ionic liquids as an extractants. J. Mol. Liq. 2020, 307, 112955. [Google Scholar] [CrossRef]
- Botelho Jr, B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt recovery from Li-Ion battery recycling: A critical review. Metals 2021, 11, 1999. [Google Scholar] [CrossRef]
- Li, P.; Luo, S.; Zhang, L.; Liu, Q.; Wang, Y.; Lin, Y.; Xu, C.; Guo, J.; Cheali, P.; Xia, X. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A. review. J. Energy Chem. 2024, 89, 144–171. [Google Scholar] [CrossRef]
- Domingues, A.M.; Gabbay de Souza, R. Review of life cycle assessment on lithium-ion batteries (LIBs) recycling. Next Sustain. 2024, 3, 100032. [Google Scholar] [CrossRef]
- Dobó, Z.; Dinh, T.; Kulcsár, T. A review on recycling of spent lithium-ion batteries. Energy Rep. 2023, 9, 6362–6395. [Google Scholar] [CrossRef]
- He, B.; Zheng, H.; Tang, K.; Xi, P.; Li, M.; Wei, L.; Guan, Q. A Comprehensive review of Lithium-Ion Battery (LiB) recycling technologies and industrial market trend insights. Recycling 2024, 9, 9. [Google Scholar] [CrossRef]
- Jiang, S.-Q.; Nie, C.-C.; Li, X.-G.; Shi, S.-X.; Gao, Q.; Wang, Y.-S.; Zhu, X.-N.; Wang, Z. Review on comprehensive recycling of spent lithium-ion batteries: A full component utilization process for green and sustainable production. Sep. Purif. Technol. 2023, 315, 123684. [Google Scholar] [CrossRef]
- Tripathy, A.; Bhuyan, A.; Padhy, R.K.; Mangla, S.K.; Roopak, R. Drivers of lithium-ion batteries recycling industry toward circular economy in industry 4.0. Comput. Ind. Eng. 2023, 179, 109157. [Google Scholar] [CrossRef]
- Biswal, B.K.; Zhang, B.; Tran, P.T.M.; Zhang, J.; Balasubramanian, R. Recycling of spent lithium-ion batteries for a sustainable future: Recent advancements. Chem. Soc. Rev. 2024, 53, 5552–5592. [Google Scholar] [CrossRef]
- Bhoi, N.K. Advancements in E-waste recycling technologies: A comprehensive overview of strategies and mechatronics integration for future development. Sustain. Mater. Technol. 2024, 42, e01182. [Google Scholar] [CrossRef]
- Rudnik, E. Innovative approaches to tin recovery from low-grade secondary resources: A focus on (bio)hydrometallurgical and solvometallurgical methods. Materials 2025, 18, 819. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, T.; Sha, Y.; Jiang, D.; Zhang, H.; Zhang, S. Selective extraction of lithium from spent lithium batteries by functional ionic liquid. ACS Sustain. Chem. Eng. 2021, 9, 7022–7029. [Google Scholar] [CrossRef]
- Meshram, P.; Jaiswal, R.V.; Baiju, C.; Gardas, R.L. An emerging trend of ionic liquids in the separation of critical metals from spent lithium and nickel based batteries. J. Mol. Liq. 2024, 400, 124594. [Google Scholar] [CrossRef]
- Vallejos-Michea, C.; Barrueto, Y.; Jimenez, Y.P. Life cycle analysis of the ionic liquid leaching process of valuable metals from electronic wastes. J. Clean. Prod. 2022, 348, 131357. [Google Scholar] [CrossRef]
- He, J.; Yan, J.; Tariq, S.M.; Duan, C.; Zhao, Y. Comparative investigation on copper leaching efficiency from waste mobile phones using various types of ionic liquids. J. Clean. Prod. 2020, 256, 120368. [Google Scholar] [CrossRef]
- Atanossova, M. Solvent Extraction of metallic species in ionic liquids: An overview of s-, p- and d-element. J. Chem. Techn. Metallurgy 2021, 56, 443–466. [Google Scholar]
- Schaeffer, N.; Passos, H.; Billard, I.; Papaiconomou, N.; Coutinho, J.A.P. Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids. Crit. Rev. Environ. Sci. Technol. 2018, 48, 859–922. [Google Scholar] [CrossRef]
- Hsu, E.; Barmak, K.; Westa, A.C.; Park, A.-H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Wstawski, S.Z.; Emmons-Burzyńska, M.; Rzelewska-Piekut, M.; Skrzypczak, A.; Regel-Rosocka, M. Studies on copper(II) leaching from e-waste with hydrogen sulfate ionic liquids: Effect of hydrogen peroxide. Hydrometallurgy 2021, 205, 105730. [Google Scholar] [CrossRef]
- Zhang, D.-J.; Dong, L.; Li, Y.-T.; Wu, Y.; Ma, Y.-X.; Yang, B. Copper leaching from waste printed circuit boards using typical acidic ionic liquids recovery of e-wastes’ surplus value. Waste Manag. 2018, 78, 191–197. [Google Scholar] [CrossRef]
- Masilela, M.; Ndlovu, S. Extraction of Ag and Au from Chloride Electronic Waste Leach Solutions Using Ionic Liquids. J. Environ. Chem. Eng. 2018, 7, 102810. [Google Scholar] [CrossRef]
- Park, Y.J.; Fray, D.J. Recovery of high purity precious metals from printed circuit boards. J. Hazard. Mater. 2009, 164, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; He, F.; Zhao, J.; Sui, N.; Xu, L.; Liu, H. Extraction and separation of cobalt (II), copper (II) and manganese (II) by Cyanex 272, PC-88A and their mixtures. Sep. Purif. Technol. 2012, 93, 8–14. [Google Scholar] [CrossRef]
- Domańska, U.; Wiśniewska, A.; Dąbrowski, Z. Recovery Method of Zinc and Manganese from ‘‘Black Mass” of Zinc Batteries Waste Using the Extraction Method with Eutectic Mixture, Ionic Liquids and Organphosphorous Acids. Polish Patent PL 243042, 22 March 2023. [Google Scholar]
- Cao, X.; Xu, L.; Shi, Y.; Wang, Y.; Xue, X. Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent. Electrochim. Acta 2019, 295, 550–557. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chem. 2020, 22, 4210–4221. [Google Scholar] [CrossRef]
- Chen, L.; Chao, Y.; Li, X.; Zhu, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chem. 2021, 23, 2177. [Google Scholar] [CrossRef]
- Boudesocque, S.; Mohamadou, A.; Dupont, L.; Martinez, A.; Dechamps, L. Use of dicyanamide ionic liquids for extraction of metal ions. RSC Adv. 2016, 6, 107894–107904. [Google Scholar] [CrossRef]
- Janiszewska, M.; Markiewicz, A.; Regel-Rosocka, M. Hydrometallurgical separation of Co(II) from Ni(II) from model and real solutions. J. Clean. Prod. 2019, 228, 746–754. [Google Scholar] [CrossRef]
- Rinne, M.; Aromaa-Stubb, R.; Elomaa, H.; Porvali, A.; Lundström, M. Evaluation of hydrometallurgical black mass recycling with simulation-based life cycle assessment. Int. J. Life Cycle Assess. 2024, 29, 1582–1597. [Google Scholar] [CrossRef]
Leaching Mixture | Ion | E (wt%) |
---|---|---|
DES 2 + H2O2 | Co(II) | 14 |
Ni(II) | 12 | |
Li(I) | 76 | |
Cu(II) | 41 | |
Mn(II) | 53 | |
DES 2 + TCCA | Co(II) | 59 |
Ni(II) | 50 | |
Li(I) | 65 | |
Cu(II) | 86 | |
Mn(II) | 69 | |
DES 2 + NaDCC × 2H2O | Co(II) | 57 |
Ni(II) | 56 | |
Li(I) | 66 | |
Cu(II) | 37 | |
Mn(II) | 62 | |
DES 2 + PHM | Co(II) | 20 |
Ni(II) | 2 | |
Li(I) | 82 | |
Cu(II) | 78 | |
Mn(II) | 61 | |
DES 2 + (15 g glycine + H2O2) | Co(II) | 100 |
Ni(II) | 100 | |
Li(I) | 100 | |
Cu(II) | 75 | |
Mn(II) | 100 | |
DES 2 + (glutaric acid + H2O2) | Co(II) | 18 |
Ni(II) | 27 | |
Li(I) | 72 | |
Cu(II) | 21 | |
Mn(II) | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domańska, U.; Wiśniewska, A.; Dąbrowski, Z. Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”. Separations 2025, 12, 167. https://doi.org/10.3390/separations12060167
Domańska U, Wiśniewska A, Dąbrowski Z. Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”. Separations. 2025; 12(6):167. https://doi.org/10.3390/separations12060167
Chicago/Turabian StyleDomańska, Urszula, Anna Wiśniewska, and Zbigniew Dąbrowski. 2025. "Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”" Separations 12, no. 6: 167. https://doi.org/10.3390/separations12060167
APA StyleDomańska, U., Wiśniewska, A., & Dąbrowski, Z. (2025). Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”. Separations, 12(6), 167. https://doi.org/10.3390/separations12060167