FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
Abstract
1. Introduction
2. Results and Discussion
2.1. The Electrode Structure Enables Catalytic Activity
2.2. Optimization of System Performance
2.3. Multi-Scale Analysis of Degradation Mechanisms and Pathways
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of Electrodes
3.3. Evaluation of Electrode Morphology and Performance
3.4. Experiments on Phenol Degradation by FeCo-LDH/CF FTEF System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, G.; Yin, L.; Shao, S.; Li, G. Recent Progress on Selective Hydrogenation of Phenol toward Cyclohexanone or Cyclohexanol. Nanotechnology 2022, 33, 072003. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Selective Hydrogenation of Phenol for Cyclohexanone: A Review. J. Ind. Eng. Chem. 2021, 94, 78–91. [Google Scholar] [CrossRef]
- Raza, W.; Lee, J.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J. Removal of Phenolic Compounds from Industrial Waste Water Based on Membrane-Based Technologies. J. Ind. Eng. Chem. 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Rajan, P.S.; Arun, J.; Brindhadevi, K.; Le, Q.H.; Pugazhendhi, A. A Review on Recent Advancements in Extraction, Removal and Recovery of Phenols from Phenolic Wastewater: Challenges and Future Outlook. Environ. Res. 2023, 237, 117005. [Google Scholar] [CrossRef] [PubMed]
- Enguita, F.J.; Leitão, A.L. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers. BioMed Res. Int. 2013, 2013, 542168. [Google Scholar] [CrossRef]
- Chouhan, S.; Yadav, S.K.; Prakash, J.; Swati; Singh, S.P. Effect of Bisphenol A on Human Health and Its Degradation by Microorganisms: A Review. Ann. Microbiol. 2014, 64, 13–21. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Li, X.; Liu, Y.; Chen, Y.; Cheng, J.; Zhu, X.; Wang, G.; Xie, J. Unlocking the Power of Manganese-Doped MoS2 Hollow Nanotubes: A Game-Changing Fenton Co-Catalyst for Ciprofloxacin Degradation. Chem. Eng. J. 2025, 511, 162009. Available online: https://www.sciencedirect.com/science/article/pii/S1385894725028359 (accessed on 12 July 2025). [CrossRef]
- Batool, A.; Shao, S.; Majhi, K.C.; Mushtaq, A.; Jiang, Y.; Ho, W.; Tsang, Y.F.; He, Y.; Yee Leung, K.M.; Lam, J.C. MnO2-Catalyzed Electrocatalytic Mineralization of Triclosan in Chlorinated Wastewater. Environ. Sci. Ecotechnol. 2025, 25, 100559. Available online: https://www.sciencedirect.com/science/article/pii/S2666498425000377 (accessed on 12 July 2025). [CrossRef]
- Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E.A.; Frydendal, R.; Hansen, T.W.; et al. Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nat. Mater. 2013, 12, 1137–1143. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Viswanathan, V.; Hansen, H.A.; Rossmeisl, J.; Nørskov, J.K. Unifying the 2e− and 4e− Reduction of Oxygen on Metal Surfaces. J. Phys. Chem. Lett. 2012, 3, 2948–2951. [Google Scholar] [CrossRef]
- Yan, B.; Shi, Z.; Lin, J.; Zhang, L.; Han, L.; Shi, X.; Yang, Q. Boosting Heterogeneous Fenton Reactions for Degrading Organic Dyes via the Photothermal Effect under Neutral Conditions. Environ. Sci. Nano 2022, 9, 532–541. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of Organic Pollutants by Homogeneous and Heterogeneous Fenton Reaction Processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Zhang, J.; Luo, L.; Yang, Y.; Huang, H.; Peng, H.; Tang, L.; Mu, Y. Insight into Electro-Fenton and Photo-Fenton for the Degradation of Antibiotics: Mechanism Study and Research Gaps. Chem. Eng. J. 2018, 347, 379–397. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, G.; Ji, Q.; Liu, H.; Hua, X.; Xia, H.; Sillanpää, M.; Qu, J. pH-Independent Production of Hydroxyl Radical from Atomic H*-Mediated Electrocatalytic H2O2 Reduction: A Green Fenton Process without Byproducts. Environ. Sci. Technol. 2020, 54, 14725–14731. [Google Scholar] [CrossRef] [PubMed]
- Ly, Q.V.; He, K.; Maqbool, T.; Sun, M.; Zhang, Z. Exploring the Potential Application of Hybrid Permonosulfate/Reactive Electrochemical Ceramic Membrane on Treating Humic Acid-Dominant Wastewater. Sep. Purif. Technol. 2022, 286, 120513. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, M.; Hedtke, T.; Deshmukh, A.; Zhou, X.; Weon, S.; Elimelech, M.; Kim, J.-H. Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. Environ. Sci. Technol. 2020, 54, 10868–10875. [Google Scholar] [CrossRef]
- Hakizimana, I.; Zhao, X.; Wang, C.; Mutabazi, E.; Zhang, C. Insights into the Flow-through Electrochemical System in Water and Wastewater Treatment: Influential Factors, Advantages, Challenges, and Perspective. Sep. Purif. Technol. 2024, 331, 125533. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, M.; Zhang, L.; Li, N.; Qian, T.; Yan, C.; Lu, J. Quaternary Medium-Entropy Alloy Metallene with Strong Charge Polarization for Highly Selective Urea Electrosynthesis from Carbon Dioxide and Nitrate. ACS Nano 2025, 19, 7273–7282. [Google Scholar] [CrossRef]
- Kuznetsova, I.; Kultin, D.; Lebedeva, O.; Nesterenko, S.; Murashova, E.; Kustov, L. Intermetallic Compound and Solid Solutions of Co75Me25 (Me: Si, Fe, Cr) as Catalysts for the Electrochemical Reaction of Nitrate Conversion to Ammonia. Int. J. Mol. Sci. 2025, 26, 1650. [Google Scholar] [CrossRef]
- Yin, Q.; Rao, D.; Zhang, G.; Zhao, Y.; Han, J.; Lin, K.; Zheng, L.; Zhang, J.; Zhou, J.; Wei, M. CoFe–Cl Layered Double Hydroxide: A New Cathode Material for High-Performance Chloride Ion Batteries. Adv. Funct. Mater. 2019, 29, 1900983. Available online: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adfm.201900983 (accessed on 11 July 2025). [CrossRef]
- Liu, P.F.; Yang, S.; Zhang, B.; Yang, H.G. Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 34474–34481. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Song, J.; Kim, Y.K.; Oh, J.; Kim, K.Y.; Noh, W.Y.; Byun, W.J.; Lee, J.U.; Yang, C.; Jang, J.W.; et al. High-Performance Electrochemical and Photoelectrochemical Water Splitting at Neutral pH by Ir Nanocluster-Anchored CoFe-Layered Double Hydroxide Nanosheets. Nano Lett. 2023, 23, 5092–5100. Available online: https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01024?ref=PDF (accessed on 11 July 2025). [CrossRef] [PubMed]
- Wang, L.; Xu, S.-M.; Yang, X.; He, S.; Guan, S.; Waterhouse, G.I.N.; Zhou, S. Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe-LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 54916–54926. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Zhong, Y.; Cui, L.; Yang, W.; Razal, J.M.; Barrow, C.J.; Liu, J. Facile Construction of MgCo2O4@CoFe Layered Double Hydroxide Core-Shell Nanocomposites on Nickel Foam for High-Performance Asymmetric Supercapacitors. J. Power Sources 2021, 484, 229288. [Google Scholar] [CrossRef]
- Paramanik, L.; Mohapatra, L.; Choi, D.Y.; Yoo, S.H. Enhanced Photocatalytic Performance of MXene-Modified Cation-Exchanged CoFe-LDH/CoFeCrO4 Heterostructure for Antibiotic Degradation and Hydrogen Production through Synergistic Charge Dynamics. Compos. Part B Eng. 2024, 278, 111416. [Google Scholar] [CrossRef]
- Yu, D.; He, J.; Wang, Z.; Pang, H.; Li, L.; Zheng, Y.; Chen, Y.; Zhang, J. Mineralization of Norfloxacin in a CoFe–LDH/CF Cathode-Based Heterogeneous Electro-Fenton System: Preparation Parameter Optimization of the Cathode and Conversion Mechanisms of H2O2 to OH. Chem. Eng. J. 2021, 417, 129240. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Adv. Mater. 2017, 29, 1701546. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Thi, X.H.L.; Bechelany, M.; Oturan, N.; Papirio, S.; Esposito, G.; van Hullebusch, E.; Cretin, M.; Oturan, M.A. Electrochemical Mineralization of Sulfamethoxazole over Wide pH Range Using FeIIFeIII LDH Modified Carbon Felt Cathode: Degradation Pathway, Toxicity and Reusability of the Modified Cathode. Chem. Eng. J. 2018, 350, 844–855. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, E.; Liu, Z.; Yang, K.; Zha, Q.; Ni, Y. Hollow CoSx Nanoparticles Grown on FeCo-LDH Microtubes for Enhanced Electrocatalytic Performances for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2021, 4, 12211–12223. [Google Scholar] [CrossRef]
- Sohrabi, H.; Khataee, A.; Ghasemzadeh, S.; Majidi, M.R.; Orooji, Y. Layer Double Hydroxides (LDHs)-Based Electrochemical and Optical Sensing Assessments for Quantification and Identification of Heavy Metals in Water and Environment Samples: A Review of Status and Prospects. Trends Environ. Anal. Chem. 2021, 31, e00139. [Google Scholar] [CrossRef]
- Hameed, A.; Batool, M.; Liu, Z.; Nadeem, M.A.; Jin, R. Layered Double Hydroxide-Derived Nanomaterials for Efficient Electrocatalytic Water Splitting: Recent Progress and Future Perspective. ACS Energy Lett. 2022, 7, 3311–3328. [Google Scholar] [CrossRef]
- Yang, F.; Sliozberg, K.; Sinev, I.; Antoni, H.; Bähr, A.; Ollegott, K.; Xia, W.; Masa, J.; Grünert, W.; Cuenya, B.R.; et al. Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem 2017, 10, 156–165. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Huong Le, T.X.; Bechelany, M.; Esposito, G.; Van Hullebusch, E.D.; Oturan, M.A.; Cretin, M. A Hierarchical CoFe-Layered Double Hydroxide Modified Carbon-Felt Cathode for Heterogeneous Electro-Fenton Process. J. Mater. Chem. A 2017, 5, 3655–3666. [Google Scholar] [CrossRef]
- Yang, L.; Xu, D.; Yang, H.; Luo, X.; Liang, H. Structurally-Controlled FeNi LDH/CNTs Electro-Fenton Membrane for In-Situ Electro-Generation and Activation of Hydroxyl Radicals toward Organic Micropollutant Treatment. Chem. Eng. J. 2022, 432, 134436. [Google Scholar] [CrossRef]
- Shakir, I.; Almutairi, Z.; Shar, S.S. Fabrication of Nanostructured Iron-Cobalt Layered Double Hydroxide: An Innovative Approach for the Facile Synthesis. J. Saudi Chem. Soc. 2022, 26, 101500. [Google Scholar] [CrossRef]
- Li, R.; Zhang, D.; Chen, H.; Wang, S.; Ling, Y.; Fang, C. Morphological and Electronic Regulation of Zn,S-Incorporated FeCo–LDH Nanosheets for Boosting the Bi-Electrocatalytic Oxygen Evolution and Urea Oxidation Reactions. ACS Sustain. Chem. Eng. 2023, 11, 16098–16107. [Google Scholar] [CrossRef]
- Abedi, H.; Mehrpooya, M. Synthesis of Three-Metal Layered Double Hydroxide and Dual Doped Graphene Oxide Composite as a Novel Electrocatalyst for Oxygen Reduction Reaction. J. Alloys Compd. 2021, 875, 160047. [Google Scholar] [CrossRef]
- Understanding Catalyst Poisoning in Precious Metal Catalysts: Causes, Problems, and Solutions. Available online: https://www.samaterials.com/content/catalyst-poisoning-in-precious-metal-catalysts-causes-problems-and-solutions.html (accessed on 12 July 2025).
- Ma, Q.; Nengzi, L.; Li, B.; Wang, Z.; Liu, L.; Cheng, X. Heterogeneously Catalyzed Persulfate with Activated Carbon Coated with CoFe Layered Double Hydroxide (AC@CoFe-LDH) for the Degradation of Lomefloxacin. Sep. Purif. Technol. 2020, 235, 116204. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, W.; Li, J.-G.; Li, Z.; Ao, X.; Xue, K.-H.; Ostrikov, K.K.; Tang, J.; Wang, C. Rh-Engineered Ultrathin NiFe-LDH Nanosheets Enable Highly-Efficient Overall Water Splitting and Urea Electrolysis. Appl. Catal. B Environ. 2021, 284, 119740. [Google Scholar] [CrossRef]
- Jia, W.; Li, Y.; Chen, C.; Wu, Y.; Liang, Y.; Du, J.; Feng, X.; Wang, H.; Wu, Q.; Guo, W.-Q. Unveiling the Fate of Metal Leaching in Bimetal-Catalyzed Fenton-like Systems: Pivotal Role of Aqueous Matrices and Machine Learning Prediction. J. Hazard. Mater. 2024, 477, 135291. [Google Scholar] [CrossRef]
- Feng, C.; Wang, F.; Liu, Z.; Nakabayashi, M.; Xiao, Y.; Zeng, Q.; Fu, J.; Wu, Q.; Cui, C.; Han, Y.; et al. A Self-Healing Catalyst for Electrocatalytic and Photoelectrochemical Oxygen Evolution in Highly Alkaline Conditions. Nat. Commun. 2021, 12, 5980. Available online: https://www.nature.com/articles/s41467-021-26281-0 (accessed on 12 July 2025). [CrossRef] [PubMed]
- Yang, W.; Zhou, M.; Oturan, N.; Bechelany, M.; Cretin, M.; Oturan, M.A. Highly Efficient and Stable FeIIFeIII LDH Carbon Felt Cathode for Removal of Pharmaceutical Ofloxacin at Neutral pH. J. Hazard. Mater. 2020, 393, 122513. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, S.; Wang, H.; Ding, J.; Liu, S.; Huang, Z.; Sun, W.; Liu, G.; Wang, L.; Xu, W. Construction of High-Performance Asymmetric Supercapacitor Based on FeCo-LDH@C3N4 Composite Electrode Material with Penetrating Structure. J. Energy Storage 2022, 56, 106034. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Z.; Wu, H.; Yin, S.; Wang, Y. Electrochemical Oxidation of Aniline Using a High-Flux CNT Filter. J. Water Process Eng. 2022, 46, 102536. [Google Scholar] [CrossRef]
- Shi, C.; Yu, S.; Li, C. Fabrication of Aligned Carbon Nanofiber Doped with SnO2-Sb for Efficient Electrochemical Removal of Tetracycline. Chem. Eng. J. 2022, 441, 136052. [Google Scholar] [CrossRef]
- Guo, D.; Liu, Y.; Ji, H.; Wang, C.-C.; Chen, B.; Shen, C.; Li, F.; Wang, Y.; Lu, P.; Liu, W. Silicate-Enhanced Heterogeneous Flow-Through Electro-Fenton System Using Iron Oxides under Nanoconfinement. Environ. Sci. Technol. 2021, 55, 4045–4053. [Google Scholar] [CrossRef]
- Li, Z.; Shen, C.; Liu, Y.; Ma, C.; Li, F.; Yang, B.; Huang, M.; Wang, Z.; Dong, L.; Wolfgang, S. Carbon Nanotube Filter Functionalized with Iron Oxychloride for Flow-through Electro-Fenton. Appl. Catal. B Environ. 2020, 260, 118204. [Google Scholar] [CrossRef]
- Kong, L.; Guo, J.; Li, Y.; Shao, J.; Ren, L.; Jia, J.; Ying, D. Using Flow-through Reactor to Enhance Ferric Ions Electrochemical Regeneration in Electro-Fenton for Wastewater Treatment. Process Saf. Environ. Prot. 2024, 191, 907–916. [Google Scholar] [CrossRef]
- Ghasemi, M.; Khataee, A.; Gholami, P.; Cheshmeh Soltani, R.D. Template-Free Microspheres Decorated with Cu-Fe-NLDH for Catalytic Removal of Gentamicin in Heterogeneous Electro-Fenton Process. J. Environ. Manag. 2019, 248, 109236. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, F.; Hou, X.; Wang, L.; Wu, W.; Wang, L.; Li, Y.; Xie, H. Fe@Fe2O3/Etched Carbon Felt as a Cathode for Efficient Bisphenol a Removal in a Flow-through Electro-Fenton System: Electron Transfer Pathway and Underlying Mechanism. Sep. Purif. Technol. 2024, 334, 125982. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Xu, A.; Wei, K.; Han, W.; Li, J.; Sun, X.; Shen, J.; Liu, X.; Wang, L. A Multi-Walled Carbon Nanotube Electrode Based on Porous Graphite-RuO2 in Electrochemical Filter for Pyrrole Degradation. Chem. Eng. J. 2017, 330, 956–964. [Google Scholar] [CrossRef]
- Gui, L.; Chen, Z.; Chen, B.; Song, Y.; Yu, Q.; Zhu, W.; Hu, Q.; Liu, Y.; Zheng, Z.; Ze, L.; et al. Preparation and Characterization of ZnO/PEG-Co(II)-PbO2 Nanocomposite Electrode and an Investigation of the Electrocatalytic Degradation of Phenol. J. Hazard. Mater. 2020, 399, 123018. [Google Scholar] [CrossRef]
- Ma, J.; Li, H.; Yang, Y.; Li, X. Influence of Water Matrix Species on Persulfate Oxidation of Phenol: Reaction Kinetics and Formation of Undesired Degradation Byproducts. Water Sci. Technol. 2018, 2017, 340–350. [Google Scholar] [CrossRef]
- Fu, X.; Han, Y.; Xu, H.; Su, Z.; Liu, L. Electrochemical Study of a Novel High-Efficiency PbO2 Anode Based on a Cerium-Graphene Oxide Co-Doping Strategy: Electrodeposition Mechanism, Parameter Optimization, and Degradation Pathways. J. Hazard. Mater. 2022, 422, 126890. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, M.; Wang, X.; Wang, C.; Lu, D.; Ma, W.; Kube, S.A.; Ma, J.; Elimelech, M. Janus Electrocatalytic Flow-through Membrane Enables Highly Selective Singlet Oxygen Production. Nat. Commun. 2020, 11, 6228. [Google Scholar] [CrossRef]
- Guo, D.; Wang, Y.; Lu, P.; Liu, J.; Liu, Y. Flow-through Electro-Fenton Using Nanoconfined Fe-Mn Bimetallic Oxides: Ionization Potential-Dependent Micropollutants Degradation Mechanism. Appl. Catal. B Environ. Energy 2023, 328, 122538. [Google Scholar] [CrossRef]
- Jia, X.; Cao, P.; Qin, X.; Chen, S.; Yu, H.; Quan, X. High-Efficiency Electrochemical Activation of H2O2 into OH Enabled by Flow-through FeOCl-Modified Carbon Electrode for Organic Pollutants Degradation. Sep. Purif. Technol. 2022, 295, 121279. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Yao, Q.; Wang, Y.; Fang, X.; Shen, C.; Li, F.; Huang, M.; Wang, Z.; Sand, W.; et al. Supported Atomically-Precise Gold Nanoclusters for Enhanced Flow-through Electro-Fenton. Environ. Sci. Technol. 2020, 54, 5913–5921. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Jing, J.; Song, G.; Zhou, M. Biomass Derived S, N Self-Doped Catalytic Janus Cathode for Flow-through Metal-Free Electrochemical Advanced Oxidation Process: Better Removal Efficiency and Lower Energy Consumption under Neutral Conditions. Chem. Eng. J. 2023, 466, 143283. [Google Scholar] [CrossRef]
- Zheng, J.; Ma, J.; Wang, Z.; Xu, S.; Waite, T.D.; Wu, Z. Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration: Mechanisms and Implications. Environ. Sci. Technol. 2017, 51, 2757–2765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Qi, Y.; Yan, Z.; Feng, Y.; Song, W.; Li, F.; Hua, T. FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation. Catalysts 2025, 15, 685. https://doi.org/10.3390/catal15070685
Dong H, Qi Y, Yan Z, Feng Y, Song W, Li F, Hua T. FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation. Catalysts. 2025; 15(7):685. https://doi.org/10.3390/catal15070685
Chicago/Turabian StyleDong, Heng, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li, and Tao Hua. 2025. "FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation" Catalysts 15, no. 7: 685. https://doi.org/10.3390/catal15070685
APA StyleDong, H., Qi, Y., Yan, Z., Feng, Y., Song, W., Li, F., & Hua, T. (2025). FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation. Catalysts, 15(7), 685. https://doi.org/10.3390/catal15070685