Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanomaterials
2.2. Soil Incubation Experiments
2.3. Sampling and Analysis
2.4. Statistical Analyses
3. Results and Discussion
3.1. Dynamics Changes in pH, Eh, and Soluble Fe and Mn Concentrations
3.2. Dynamics of Available Cd During Reduction/Oxidation Alternations
3.3. Transfer Process of Cd Release from Soils
3.4. Soil Bacterial Communities and Functions
3.5. Relationship Between Microbial Community Structure and Environmental Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NCC | Nano-calcium carbonate |
NHAP | Nano-hydroxyapatite |
C+P | Nano-calcium carbonate and nano-hydroxyapatite |
References
- Zhou, J.; Cui, H.; Zhu, Z.; Liu, M.; Xia, R.; Liu, X.; Ding, C.; Zhou, J. Long-term and multipoint observations of atmospheric heavy metal (cu and cd) deposition and accumulation in soil–crop system and human health risk evaluation around a large smelter. Expo. Health 2024, 16, 475–487. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, R.; Landis, J.D.; Sun, Y.; Zeng, Z.; Zhou, J. Isotope evidence for rice accumulation of newly deposited and soil legacy cadmium: A three-year field study. Environ. Sci. Technol. 2024, 58, 17283–17294. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zheng, L.; Jiang, Y. Cadmium toxicity and autophagy: A review. Biometals 2024, 37, 609–629. [Google Scholar] [CrossRef]
- Du, B.; Zhou, J.; Lu, B.; Zhang, C.; Li, D.; Zhou, J.; Jiao, S.; Zhao, K.; Zhang, H. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Sci. Total Environ. 2020, 720, 137585. [Google Scholar] [CrossRef]
- Rasin, P.; Ashwathi, A.; Basheer, S.M.; Haribabu, J.; Santibanez, J.F.; Garrote, C.A.; Arulraj, A.; Mangalaraja, R.V. Exposure to cadmium and its impacts on human health: A short review. J. Hazard. Mater. Adv. 2025, 17, 100608. [Google Scholar] [CrossRef]
- Wiggenhauser, M.; Aucour, A.M.; Bureau, S.; Campillo, S.; Telouk, P.; Romani, M.; Ma, J.F.; Landrot, G.; Sarret, G. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Environ. Pollut. 2021, 269, 115934. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, X.W.; Li, Z.T.; Liang, X.F.; Wang, Z.; Zhang, C.C.; Liu, W.J.; Liu, R.L.; Zhao, Y.J. Inhibition effect of sulfur on cd activity in soil-rice system and its mechanism. J. Hazard. Mater. 2021, 407, 124647. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, Z.; Zhao, Y.; Huang, Z.; Fei, J.; Han, Y.; Wang, M.; Yu, P.; Peng, J.; Huang, Y.; et al. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions. Environ. Pollut. 2022, 306, 119390. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Z.; Beiyuan, J.; Cui, Y.; Chen, L.; Chen, H.; Fang, L. A critical review of uranium in the soil-plant system: Distribution, bioavailability, toxicity, and bioremediation strategies. Crit. Rev. Environ. Sci. Technol. 2023, 53, 340–365. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, J.; Shen, L.; Zheng, X.; Zhou, J.; Zhou, J. Activation of endogenous cadmium from biochar under simulated acid rain enhances the accumulation risk of lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2023, 255, 114820. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Yang, H.M.; Wang, M.; Sun, L.; Xu, Y.M.; Sun, G.H.; Huang, Q.Q.; Liang, X.F. Immobilization of soil cd by sulfhydryl grafted palygorskite in wheat-rice rotation mode: A field-scale investigation. Sci. Total Environ. 2022, 826, 154156. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Cui, H.; Li, H.; Fan, Y.; Li, D.; Wei, J.; Zhou, J.; Zhou, J. Phosphorus release characterization of biochar loaded with inherent and exogenous phosphorus and impact on soil Pb immobilization. J. Clean. Prod. 2023, 400, 136713. [Google Scholar] [CrossRef]
- Bwire, D.; Saito, H.; Sidle, R.C.; Nishiwaki, J. Water management and hydrological characteristics of paddy-rice fields under alternate wetting and drying irrigation practice as climate smart practice: A review. Agronomy 2024, 14, 1421. [Google Scholar] [CrossRef]
- Cui, H.; Li, D.; Liu, X.; Fan, Y.; Zhang, X.; Zhang, S.; Zhou, J.; Fang, G.; Zhou, J. Dry-wet and freeze-thaw aging activate endogenous copper and cadmium in biochar. J. Clean. Prod. 2021, 288, 125605. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.-M.; Gu, Y.; Kopittke, P.M.; Zhao, F.-J.; Wang, P. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems. Environ. Sci. Technol. 2019, 53, 2500–2508. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, P.; Kopittke, P.M. Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma 2018, 323, 116–125. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, H.; Yang, S.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Micro-nanocomposites in environmental management. Adv. Mater. 2016, 28, 10443–10458. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Ma, C.; Yu, J.; Lei, S.; Han, Q.; Wang, H. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review. Environ. Pollut. 2023, 336, 122340. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.H. Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J. Clean. Prod. 2022, 372, 133729. [Google Scholar] [CrossRef]
- Wu, Q.H.; Jiang, X.H.; Wu, H.X.; Zou, L.N.; Wang, L.B.; Shi, J.Y. Effects and mechanisms of copper oxide nanoparticles with regard to arsenic availability in soil-rice systems: Adsorption behavior and microbial response. Environ. Sci. Technol. 2022, 56, 8142–8154. [Google Scholar] [CrossRef]
- Wu, H.; Tong, J.; Jia, F.; Jiang, X.; Zhang, H.; Wang, J.; Luo, Y.; Pang, J.; Shi, J. Nano hydroxyapatite pre-treatment effectively reduces cd accumulation in rice (Oryza sativa L.) and its impact on paddy microbial communities. Chemosphere 2023, 338, 139567. [Google Scholar] [CrossRef] [PubMed]
- Damircheli, M.; MajidiRad, A. The influence of the dispersion method on the morphological, curing, and mechanical properties of nr/sbr reinforced with nano-calcium carbonate. Polymers 2023, 15, 2963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Meng, X.; Pan, Z.; Li, Y.; Qian, H.; Yang, X.; Zhu, X.; Zhang, X. Advances in nanohydroxyapatite: Synthesis methods, biomedical applications, and innovations in composites. Regen. Biomater. 2025, 12, rbae129. [Google Scholar]
- Liu, C. Studies on Preparation of Nano-CaCo3 from Carbide Slag and the Adsorption of Heavy Metals; Inner Mongolia University of Technology: Hohhot, China, 2019. [Google Scholar]
- Zhao, C.; Ren, S.; Zuo, Q.; Wang, S.; Zhou, Y.; Liu, W.; Liang, S. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain. Sci. Total Environ. 2018, 627, 553–560. [Google Scholar] [CrossRef]
- Zhong, L.P.; Zhang, Q.N.; Chen, X.P.; Qin, L.Y.; Chen, Q. Thermodynamics and kinetics analysis of highly active lime combustion process. Technol. Dev. Chem. 2023, 52, 19–22+40. [Google Scholar]
- Guo, J.; Han, Y.; Xu Leixu, L.; Jiao, J. Nano-hydroxyapatite composite materials as adsorbents in wastewater treatment. Bull. Chin. Ceram. Soc. 2016, 35, 2466–2475, 2491. [Google Scholar]
- Fan, Y.; Wu, Q.; Bao, B.; Cao, Y.; Zhang, S.; Cui, H. Ferrihydrite reduces the bioavailability of copper and cadmium and phosphorus release risk in hydroxyapatite amended soil. J. Environ. Chem. Eng. 2021, 9, 106756. [Google Scholar] [CrossRef]
- Wang, F.; Che, R.; Deng, Y.; Wu, Y.; Tang, L.; Xu, Z.; Wang, W.; Liu, H.; Cui, X. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 2021, 157, 108238. [Google Scholar] [CrossRef]
- Fulda, B.; Voegelin, A.; Kretzschmar, R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ. Sci. Technol. 2013, 47, 12775–12783. [Google Scholar] [CrossRef]
- DeMontigny, W.; Burt, C.D.; Stidston, J.; Siggers, J.; Weese, D.; Cabrera, M. Microbially induced calcium carbonate precipitation in broiler litter and its effect on soil pH. Soil Sci. Soc. Am. J. 2023, 87, 1136–1146. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, B.; Zhang, M.; Zhang, D.; Liang, J.; Zhou, Y.; Li, J.; Zhou, L. The simultaneous passivation of arsenic and cadmium in contaminated soil through combined use of schwertmannite and calcium carbonate. J. Environ. Chem. Eng. 2024, 12, 114136. [Google Scholar] [CrossRef]
- Hue, N. Phosphorus nutrient in organic farming-a review. Mod. Concepts Dev. Agron. 2024, 13, 000820. [Google Scholar] [CrossRef]
- Yuan, C.; Li, F.; Cao, W.; Yang, Z.; Hu, M.; Sun, W. Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. J. Hazard. Mater. 2019, 378, 120672. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Chen, X.; Yang, M.; Xing, X.; Jiao, J.; An, G.; Li, X.; Xiong, X. Comprehensive review on leakage characteristics and diffusion laws of carbon dioxide pipelines. Energy Fuels 2024, 38, 10456–10493. [Google Scholar] [CrossRef]
- Yan, J.; Fischel, M.; Chen, H.; Siebecker, M.G.; Wang, P.; Zhao, F.-J.; Sparks, D.L. Cadmium speciation and release kinetics in a paddy soil as affected by soil amendments and flooding-draining cycle. Environ. Pollut. 2021, 268, 115944. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, S.; Tan, S.; Jiang, Y.; Luo, X.; Hao, X.; Huang, Q.; Chen, W. Core species derived from multispecies interactions facilitate the immobilization of cadmium. Environ. Sci. Technol. 2023, 57, 4905–4914. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, H.; Gu, J.; Jia, R.; Li, H.; Wang, Q.; Zeng, M.; Liao, B. Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.). Plant Soil 2019, 440, 327–339. [Google Scholar] [CrossRef]
- da Silva, J.T.; Paniz, F.P.; Sanchez, F.e.S.; Pedron, T.; Torres, D.P.; Garcia da Rocha Concenco, F.I.; Barbat Parfitt, J.M.; Batista, B.L. Selected soil water tensions at phenological phases and mineral content of trace elements in rice grains—Mitigating arsenic by water management. Agric. Water Manag. 2020, 228, 105884. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Z.; Li, S.; Wang, Y.; Sun, X.; Zhang, X.; Li, M. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by doc under waterlogging. Chemosphere 2020, 240, 124846. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Liu, J.; Liu, X.; Liu, R.; Zhao, Y. Differences and mechanism of dynamic changes of cd activity regulated by polymorphous sulfur in paddy soil. Chemosphere 2022, 291, 133055. [Google Scholar] [CrossRef]
- Lu, H.L.; Li, K.W.; Nkoh, J.N.; He, X.; Xu, R.K.; Qian, W.; Shi, R.Y.; Hong, Z.N.; Nkoh, J.N. Effects of ph variations caused by redox reactions and ph buffering capacity on cd(ii) speciation in paddy soils during submerging/draining alternation. Ecotox Env. Safe 2022, 234, 113409. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fu, Q.; Wu, T.; Cui, P.; Fang, G.; Liu, C.; Chen, C.; Liu, G.; Wang, W.; Wang, D.; et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil. Environ. Sci. Technol. 2021, 55, 14281–14293. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Si, T.; Lu, Q.; Bian, R.; Wang, Y.; Liu, X.; Zhang, X.; Zheng, J.; Cheng, K.; Joseph, S.; et al. Rape straw biochar enhanced cd immobilization in flooded paddy soil by promoting fe and sulfur transformation. Chemosphere 2023, 339, 139652. [Google Scholar] [CrossRef]
- Gao, Q.; Chang, H.; Huang, T.; Zhou, R. Understanding the role of pig manure, rice straw, and calcium carbonate on the cadmium pollution in soil-wheat system. Soil Sci. Soc. Am. J. 2024, 88, 1959–1970. [Google Scholar] [CrossRef]
- Chen, X.; Yang, S.; Ma, J.; Huang, Y.; Wang, Y.; Zeng, J.; Li, J.; Li, S.; Long, D.; Xiao, X. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf polish wheat (Triticum polonicum L.). J. Hazard. Mater. 2023, 448, 130998. [Google Scholar] [CrossRef]
- Shiowatana, J.; McLaren, R.G.; Chanmekha, N.; Samphao, A. Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J. Environ. Qual 2001, 30, 1940–1949. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Z.-Y.; Li, C.; Yuan, H.-W.; Hu, L.; Zeng, P.; Yang, W.-T.; Liao, B.-H.; Gu, J.-F. Straw removal reduces Cd availability and rice Cd accumulation in Cd-contaminated paddy soil: Cd fraction, soil microorganism structure and porewater DOC and Cd. J. Hazard. Mater. 2024, 476, 135189. [Google Scholar] [CrossRef]
- Kulsum, P.G.P.S.; Khanam, R.; Das, S.; Nayak, A.K.; Tack, F.M.; Meers, E.; Vithanage, M.; Shahid, M.; Kumar, A.; Chakraborty, S. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environ. Res. 2023, 220, 115098. [Google Scholar] [CrossRef]
- Ruttens, A.; Adriaensen, K.; Meers, E.; De Vocht, A.; Geebelen, W.; Carleer, R.; Mench, M.; Vangronsveld, J. Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition. Environ. Pollut. 2010, 158, 1428–1434. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, D.; Zhou, J.; Liu, C.; Xiao, X.; Song, C. Cd (ii) removal by novel fabricated ground calcium carbonate/nano-tio 2 (gcc/tio 2) composite from aqueous solution. Water Air Soil Pollut. 2019, 230, 1–14. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, J.N.; Teng, Z.D.; Yuan, J.J.; Wang, G.T.; Luo, W.Q.; Ji, X.N.; Hu, W.; Li, M. Immobilization of cadmium in river sediment using phosphate solubilizing bacteria coupled with biochar-supported nano-hydroxyapatite. J. Clean. Prod. 2022, 348, 131221. [Google Scholar] [CrossRef]
- Ke, W.S.; Li, C.X.; Zhu, F.; Luo, X.H.; Feng, J.P.; Li, X.; Jiang, Y.F.; Wu, C.; Hartley, W.; Xue, S.G. Effect of potentially toxic elements on soil multifunctionality at a lead smelting site. J. Hazard. Mater. 2023, 454, 131525. [Google Scholar] [CrossRef] [PubMed]
- Chattaraj, S.; Chattaraj, M.; Mitra, D.; Ganguly, A.; Thatoi, H.; Das Mohapatra, P.K. 16s amplicon sequencing of the gastrointestinal microbiota of cirrhinus reba and isolation of an autochthonous probiotic using culture based approaches. Syst. Microbiol. Biomanufact. 2024, 5, 156–170. [Google Scholar] [CrossRef]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; ALNadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef]
- Mubeen, B.; Hasnain, A.; Wang, J.; Zheng, H.; Naqvi, S.A.H.; Prasad, R.; Rehman, A.u.; Sohail, M.A.; Hassan, M.Z.; Farhan, M. Current progress and open challenges for combined toxic effects of manufactured nano-sized objects (mno’s) on soil biota and microbial community. Coatings 2023, 13, 212. [Google Scholar] [CrossRef]
- Gan, C.-d.; Jia, Y.-b.; Yang, J.-y. Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. J. Hazard. Mater. 2021, 405, 124694. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.C.; Zhang, Y.; Wu, H.; Zhou, J. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 2022, 343, 126137. [Google Scholar] [CrossRef]
- Li, Q.; Chang, J.; Li, L.; Lin, X.; Li, Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. Sci. Total Environ. 2024, 924, 171399. [Google Scholar] [CrossRef]
- He, X.; Xiao, X.; Wei, W.; Li, L.; Zhao, Y.; Zhang, N.; Wang, M. Soil rare microorganisms mediated the plant cadmium uptake: The central role of protists. Sci. Total Environ. 2024, 908, 168505. [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, J.; He, Y.; Chen, Y.; Wang, Y.; Yang, X.; Wang, T.; Wu, L.; Xu, J. Enhanced soil function and health by soybean root microbial communities during in situ remediation of cd-contaminated soil with the application of soil amendments. mSystems 2023, 8, e01049-01022. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, J.; Franks, A.E.; Huang, X.; Yang, Q.; Cheng, Z.; Liu, Y.; Ma, B.; Xu, J.; He, Y. Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biol. Biochem. 2023, 177, 108916. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, J.; Liu, W.; Yan, Y.; Wang, Y. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a cd-contaminated alkaline soil. J. Hazard. Mater. 2021, 404, 124005. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.Y.; Liu, R.; Zhou, Y.M.; Li, N.; Hou, L.Q.; Ma, Q.; Gao, B. Fire phoenix facilitates phytoremediation of pah-cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environ. Int. 2020, 136, 105421. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Luo, L.; Jiang, G.; Li, G.; Zhu, C.; Meng, W.; Zhang, J.; Jiao, Q.; Du, P.; Li, X. Sulfur enhances cadmium bioaccumulation in cichorium intybus by altering soil properties, heavy metal availability and microbial community in contaminated alkaline soil. Sci. Total Environ. 2022, 837, 155879. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhao, Y.; Feng, Y.; Pan, Y.; Yu, J.; Qin, H.; Chen, J. Effects of biochar on microbial community abundance and activity in long-term Pb and Cd contaminated soils. J. Agro-Environ. Sci. 2022, 41, 66–74. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Fei, J.; You, L.; Zhou, J.; Zhou, J. Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics. Agronomy 2025, 15, 1423. https://doi.org/10.3390/agronomy15061423
Du B, Fei J, You L, Zhou J, Zhou J. Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics. Agronomy. 2025; 15(6):1423. https://doi.org/10.3390/agronomy15061423
Chicago/Turabian StyleDu, Buyun, Jiasai Fei, Laiyong You, Jing Zhou, and Jun Zhou. 2025. "Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics" Agronomy 15, no. 6: 1423. https://doi.org/10.3390/agronomy15061423
APA StyleDu, B., Fei, J., You, L., Zhou, J., & Zhou, J. (2025). Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics. Agronomy, 15(6), 1423. https://doi.org/10.3390/agronomy15061423