Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Details
2.1.1. Sample Source and Compositional Analysis
2.1.2. Heavy Metal Leaching by Rainfall
2.1.3. Heavy Metal Stabilization Experiment
2.2. Test Methods
3. Results and Discussion
3.1. Individual Stabilization of Heavy Metals in Smelting Slag by Ferrous Sulfur
3.2. Synergistic Stabilization of Multi-Metals in Smelting Slag by Iron–Sulfur
3.2.1. Synergistic Stabilization Experiments on Iron and Sulfur with Various Heavy Metals
3.2.2. Pattern of Change in pH
3.3. Mechanism of Simultaneous Stabilization of Multiple Metals in Smelting Slag
3.3.1. Analysis of the Encapsulation Process of the Fe-S(II) System Surface Sulfide Layer
3.3.2. Stabilization Mechanism of Fe-S(II) on Waste Slag
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, E.K.; Carsella, J.; Varian-Ramos, C.W.; Schiffer, T.; Staples, S.K.; Diawara, M. Effects of Lead (Pb) from Smelter Operations in an Urban Terrestrial Food Chain at a Colorado Superfund Site. Bull. Environ. Contam. Toxicol. 2024, 112, 17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, J.; Jia, D.; Chen, Y.; Li, L.; Evrendilek, F.; Yang, C.; Yuan, H.; Ninomiya, Y.; Li, W. Migration and transformation pathways of chlorine and sulfur in producing pyrolytic biochar of a Zn/Cd-remediating plant amended with modified kaolin. Fuel 2025, 383, 133856. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Z.; Chen, Z.; Wang, J.; Evrendilek, F.; Liu, J.; He, Y.; Ninomiya, Y.; Xie, W.; Zhuang, G. Simultaneous optimizations of heavy metal immobilizations, products, temperature, and atmosphere dependency by acid pretreatment-assisted pyrolysis and gasification of hyperaccumulator (Pteris vittate L.) biomass. J. Clean. Prod. 2024, 450, 142004. [Google Scholar] [CrossRef]
- Xu, D.-M.; Fu, R.-B.; Tong, Y.-H.; Shen, D.-L.; Guo, X.-P. The potential environmental risk implications of heavy metals based on their geochemical and mineralogical characteristics in the size-segregated zinc smelting slags. J. Clean. Prod. 2021, 315, 128199. [Google Scholar] [CrossRef]
- Xu, D.-M.; Zhan, C.-L.; Liu, H.-X.; Lin, H.-Z. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environ. Sci. Pollut. Res. 2019, 26, 35657–35669. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Routh, J.; Jacks, G.; Bhattacharya, P.; Mörth, M. Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Appl. Geochem. 2006, 21, 1760–1780. [Google Scholar] [CrossRef]
- Floroiu, R.M.; Davis, A.P.; Torrents, A. Kinetics and mechanism of As2S3 (am) dissolution under N2. Environ. Sci. Technol. 2004, 38, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Coussy, S.; Benzaazoua, M.; Blanc, D.; Moszkowicz, P.; Bussière, B. Arsenic stability in arsenopyrite-rich cemented paste backfills: A leaching test-based assessment. J. Hazard. Mater. 2011, 185, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Triszcz, J.M.; Porta, A.; Einschlag, F.S.G. Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chem. Eng. J. 2009, 150, 431–439. [Google Scholar] [CrossRef]
- Huminicki, D.M.; Rimstidt, J.D. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl. Geochem. 2009, 24, 1626–1634. [Google Scholar] [CrossRef]
- Eighmy, T.T.; Crannell, B.S.; Butler, L.G.; Cartledge, F.K.; Emery, E.F.; Oblas, D.; Krzanowski, J.E.; Eusden, J.D.; Shaw, E.L.; Francis, C.A. Heavy Metal Stabilization in Municipal Solid Waste Combustion Dry Scrubber Residue Using Solu-ble Phosphate. Environ. Sci. Technol. 1997, 31, 3330–3338. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.C.; Yeh, K.J.; Shue, M.F. Stabilization of an elevated heavy metal contaminated site. J. Hazard. Mater. 2001, 88, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—A SEM, TEM and XPS study. Mater. Res. Bull. 2010, 45, 1361–1367. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Li, X.-Q.; Cao, J.; Zhang, W.-X.; Wang, H.P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006, 120, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, L.; Li, Z.; Tang, X.; He, M.; Yang, S.; Liu, X.; Xu, J. Simultaneous adsorption of Cd (II) and As (III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci. Total Environ. 2020, 708, 134823. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.M.; Randall, S.R. Surface complexation of arsenic (V) to iron (III)(hydr) oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 4223–4230. [Google Scholar] [CrossRef]
- Beak, D.G.; Basta, N.T.; Scheckel, K.G.; Traina, S.J. Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system. Environ. Sci. Technol. 2006, 40, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, D.; Qiu, G.; Liu, C.; Ning, Z. Photooxidation of Fe (II) to schwertmannite promotes As (III) oxidation and immobilization on pyrite under acidic conditions. J. Environ. Manag. 2022, 317, 115425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, H.; Wang, X.; Yao, D.; Hou, H.; Shi, Y.; Chen, J.; Wang, L.; Ma, M.; Liu, J. The mechanism of microwave-induced mineral transformation and stabilization of arsenic in realgar tailings using ferrous sulfate. Chem. Eng. J. 2020, 393, 124732. [Google Scholar] [CrossRef]
- HJ/T299-2007; Solid Waste. Extraction Procedure for Leaching Toxicity. Sulphuric Acid and Nitric Acid Method. Chinese Standard: Beijing, China, 2007.
- GB5085.3-2007; Identification Standards for Hazardous Wastes—Identification for Extraction Toxicity. Chinese Standard: Beijing, China, 2007.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, K.; Xie, R.; Qu, G.; Li, Z.; Yuan, Y.; Xu, R.; Zhao, C. Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation. Sustainability 2025, 17, 5445. https://doi.org/10.3390/su17125445
Xiang K, Xie R, Qu G, Li Z, Yuan Y, Xu R, Zhao C. Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation. Sustainability. 2025; 17(12):5445. https://doi.org/10.3390/su17125445
Chicago/Turabian StyleXiang, Keyi, Ruosong Xie, Guangfei Qu, Zhishuncheng Li, Yongheng Yuan, Rui Xu, and Chenyang Zhao. 2025. "Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation" Sustainability 17, no. 12: 5445. https://doi.org/10.3390/su17125445
APA StyleXiang, K., Xie, R., Qu, G., Li, Z., Yuan, Y., Xu, R., & Zhao, C. (2025). Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation. Sustainability, 17(12), 5445. https://doi.org/10.3390/su17125445