Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,797)

Search Parameters:
Keywords = Dengue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1330 KiB  
Article
Global Circulation Dynamics and Its Determinants of Dengue Virus: A Network Evolution and Model Study from 1990 to 2019
by Haoyu Long, Jinfeng Zeng, Yilin Chen, Kang Tang, Chi Zhang, Qianru Sun, Lei Gao, Yuhui Lin, Junting He, Chunhui Yang, Xiaoying Lin, Wenzhe Su, Kuibiao Li, Biao Di, Min Kang, Chongguang Yang and Xiangjun Du
Viruses 2025, 17(8), 1078; https://doi.org/10.3390/v17081078 - 4 Aug 2025
Abstract
As dengue is an increasing global health threat, a better understanding of the global circulation dynamics and its determinants would be helpful for precise prevention and control of dengue. The dynamics of global circulation of the four dengue virus serotypes were explored utilizing [...] Read more.
As dengue is an increasing global health threat, a better understanding of the global circulation dynamics and its determinants would be helpful for precise prevention and control of dengue. The dynamics of global circulation of the four dengue virus serotypes were explored utilizing genetic sequences through a network-based method. Four new circulation indicators, including local intensity, betweenness centrality, tip frequency, and persistence time, were defined. Three circulation roles, including source, hub, and destination, were proposed on the basis of new indicators. Spatial and temporal changes of the three circulation roles, along with the persistence time, were explored. Important determinants were also evaluated by machine learning models. Thailand, Indonesia, and Vietnam in Asia and Venezuela and Colombia in Americas were the sources for all four serotypes in different decades. Destinations were observed mostly in island regions. Over the decades, the number of regions with different circulation roles and persistence of DENV-1 increased significantly. Climate and airline factors were involved in the important determinants to circulation roles and persistence of dengue. The roles identified in the global circulation of dengue and important determinants, including climate and airline factors, provide new insights into global dynamics and are beneficial for controlling dengue. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 (registering DOI) - 3 Aug 2025
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

23 pages, 1139 KiB  
Article
A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
by Anna Artner, Irem Diler, Balázs Hankó, Szilvia Sebők and Romána Zelkó
J. Clin. Med. 2025, 14(15), 5436; https://doi.org/10.3390/jcm14155436 (registering DOI) - 1 Aug 2025
Viewed by 188
Abstract
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to [...] Read more.
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to assess Hungarian regulatory practices regarding off-label statin use. Methods: A systematic literature search (PubMed, Web of Science, Scopus, ScienceDirect; 2010–May 2025) was conducted using the terms “drug repositioning” OR “off-label prescription” AND “statin” NOT “cardiovascular,” following PRISMA guidelines. Hungarian off-label usage data from the NNGYK (2008–2025) were also analyzed. Results: Out of 205 publications, 12 met the inclusion criteria—75% were oncology-focused, and 25% focused on infectious diseases. Most were preclinical (58%); only 25% offered strong clinical evidence. Applications included hematologic malignancies, solid tumors, Cryptococcus neoformans, SARS-CoV-2, and dengue virus. Mechanisms involved mevalonate pathway inhibition and modulation of host immune responses. Hungarian data revealed five approved off-label statin uses—three dermatologic and two pediatric metabolic—supported by the literature and requiring post-treatment reporting. Conclusions: While preclinical findings are promising, clinical validation of off-label statin use remains limited. Statins should be continued in cancer patients with cardiovascular indications, but initiation for other purposes should be trial-based. Future directions include biomarker-based personalization, regulatory harmonization, and cost-effectiveness studies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 (registering DOI) - 31 Jul 2025
Viewed by 193
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

24 pages, 5906 KiB  
Article
In Silico Mining of the Streptome Database for Hunting Putative Candidates to Allosterically Inhibit the Dengue Virus (Serotype 2) RdRp
by Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Tarad Abalkhail, Shahzeb Khan and Mahmoud A. A. Ibrahim
Pharmaceuticals 2025, 18(8), 1135; https://doi.org/10.3390/ph18081135 - 30 Jul 2025
Viewed by 330
Abstract
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is [...] Read more.
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is a charming druggable target owing to its crucial function in viral reproduction. In recent years, streptomycetes natural products (NPs) have attracted considerable attention as a potential source of antiviral drugs. Methods: Seeking prospective inhibitors that inhibit the DENV2 RdRp allosteric site, in silico mining of the Streptome database was executed. AutoDock4.2.6 software performance in predicting docking poses of the inspected inhibitors was initially conducted according to existing experimental data. Upon the assessed docking parameters, the Streptome database was virtually screened against DENV2 RdRp allosteric site. The streptomycetes NPs with docking scores less than the positive control (68T; calc. −35.6 kJ.mol−1) were advanced for molecular dynamics simulations (MDS), and their binding affinities were computed by employing the MM/GBSA approach. Results: SDB9818 and SDB4806 unveiled superior inhibitor activities against DENV2 RdRp upon MM/GBSA//300 ns MDS than 68T with ΔGbinding values of −246.4, −242.3, and −150.6 kJ.mol−1, respectively. A great consistency was found in both the energetic and structural analyses of the identified inhibitors within the DENV2 RdRp allosteric site. Furthermore, the physicochemical characteristics of the identified inhibitors demonstrated good oral bioavailability. Eventually, quantum mechanical computations were carried out to evaluate the chemical reactivity of the identified inhibitors. Conclusions: As determined by in silico computations, the identified streptomycetes NPs may act as DENV2 RdRp allosteric inhibitors and mandate further experimental assays. Full article
Show Figures

Graphical abstract

15 pages, 1445 KiB  
Article
Gas Chromatography–Mass Spectrometry Analysis of Artemisia judaica Methanolic Extract: Chemical Composition, Radical Scavenging Potential, Bioherbicidal Activity, and Dengue Vector Control
by Naimah Asid H. Alanazi, Amani Alhejely, Sultan Mohammed Areshi, Hanan K. Alghibiwi, Samiah A. Alhabardi, Mohammed A. Akeel, Amal Naif Alshammari, Sarah Mohammed Alrajeh, Gadah A. Al-Hamoud and Salama A. Salama
Int. J. Mol. Sci. 2025, 26(15), 7355; https://doi.org/10.3390/ijms26157355 - 30 Jul 2025
Viewed by 215
Abstract
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived [...] Read more.
Today’s primary challenges include identifying efficient, affordable, and environmentally sustainable substances to serve as raw materials in industrial, agricultural, and medicinal applications. This study aimed to evaluate the chemical composition and biological properties (namely antioxidant and allelopathic activities) of the methanolic extract derived from the above-ground portions of Artemisia judaica collected in Jazan, Saudi Arabia. GC-MS was used to evaluate the chemical composition of the methanolic extract derived from Artemisia judaica. GC-MS analysis revealed a total of 22 volatile compounds in the extract. The most prominent compounds identified were 2-ethylhexanoic acid, 5-hydroxy-6-(1-hydroxyethyl)-2,7-dimethoxynaphtho-quinone, and piperitone. The extract demonstrated strong antioxidant activity in both the DPPH and ABTS radical scavenging assays, comparable to the standard antioxidant ascorbic acid. The IC50 value for the extract was 31.82 mg/mL in the DPPH assay and 39.93 mg/mL in the ABTS testing. Additionally, the extract exhibited dose-dependent inhibition of seed germination, root growth, and shoot growth of the weed Chenopodium murale in allelopathic bioassays. The most significant suppression was observed in shoot growth with an IC50 value of 45.90 mg/mL, which was lower than the IC50 values for root development and seed germination of C. murale, recorded at 56.16 mg/mL and 88.80 mg/mL, respectively. Furthermore, the findings indicated that methanolic extracts had significant lethal toxic effects on the life cycle of Aedes aegypti. Future research will focus on extracting uncontaminated substances and evaluating the biological effects of each specific constituent. Full article
Show Figures

Figure 1

2 pages, 136 KiB  
Editorial
Recent Advances in Vaccine Development for Flaviviruses and Alphaviruses
by Young Chan Kim and Arturo Reyes-Sandoval
Vaccines 2025, 13(8), 808; https://doi.org/10.3390/vaccines13080808 - 30 Jul 2025
Viewed by 203
Abstract
Mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), Zika (ZIKV), and chikungunya (CHIKV) have re-emerged in recent decades, affecting millions of people worldwide [...] Full article
17 pages, 1036 KiB  
Review
Systematic Review of the Ovitrap Surveillance of Aedes Mosquitoes in Brazil (2012–2022)
by Raquel Fernandes Silva Chagas do Nascimento, Alexandre da Silva Xavier, Tania Ayllón Santiago, Daniel Cardoso Portela Câmara, Izabel Cristina dos Reis, Edson Delatorre, Patrícia Carvalho de Sequeira, Vitor Henrique Ferreira-de-Lima, Tamara Nunes Lima-Camara and Nildimar Alves Honório
Trop. Med. Infect. Dis. 2025, 10(8), 212; https://doi.org/10.3390/tropicalmed10080212 - 28 Jul 2025
Viewed by 415
Abstract
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites [...] Read more.
Background: Arthropod-borne diseases primarily affect tropical and subtropical regions, exhibiting seasonal patterns that peak during hot and rainy months when conditions favor mosquito vector proliferation. Factors such as high temperatures, elevated humidity, rainfall, urbanization, and the abundance of natural and artificial breeding sites influence Aedes vector dynamics. In this context, arboviruses pose significant public health challenges, likely worsened by global warming. In Brazil, Aedes (Stegomyia) aegypti (Linnaeus, 1762) is the primary vector for yellow fever, dengue, chikungunya, and Zika. Aedes (Stegomyia) albopictus (Skuse, 1894) is an important global arbovirus vector and is considered a potential vector in Brazil. Entomological surveillance of these species often uses oviposition traps targeting immature stages. Evaluating studies that use ovitraps to collect Ae. aegypti and Ae. albopictus egg is essential for improving mosquito surveillance strategies. This study systematically reviewed peer-reviewed articles on ovitrap-based surveillance of Aedes mosquitoes in Brazil, published in Portuguese and English from 2012 to 2022. The findings suggest that ovitraps are an effective method for detecting the presence or absence of Ae. aegypti and Ae. albopictus, serving as a reliable proxy for estimating mosquito abundance in Brazilian contexts. Full article
Show Figures

Figure 1

14 pages, 667 KiB  
Review
Hemophagocytic Lymphohistiocytosis Triggered by Dengue: A Narrative Review and Individual Patient Data Meta-Analysis
by Angelos Sourris, Alexandra Vorria, Despoina Kypraiou, Andreas G. Tsantes and Petros Ioannou
Viruses 2025, 17(8), 1047; https://doi.org/10.3390/v17081047 - 27 Jul 2025
Viewed by 371
Abstract
Background: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome that may be triggered by infections such as dengue virus. Due to overlapping features with severe dengue and sepsis, diagnosis of HLH in dengue-infected patients remains challenging. Methods: We conducted a narrative review and [...] Read more.
Background: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome that may be triggered by infections such as dengue virus. Due to overlapping features with severe dengue and sepsis, diagnosis of HLH in dengue-infected patients remains challenging. Methods: We conducted a narrative review and individual patient data meta-analysis of published cases of dengue-associated HLH. Eligible studies were identified through a search of PubMed and Scopus databases up to 5 March 2025. Clinical, laboratory, microbiological, treatment, and outcome data were extracted and analyzed. Results: A total of 133 patients from 71 studies were included. The median patient age was 18 years, and 56.8% were male. Common clinical features included fever (96.9%), cytopenias, organomegaly, and liver dysfunction. ALT elevation, jaundice, and hypofibrinogenemia were associated with mortality. DENV-1 was the most common serotype (57.4%) and was negatively associated with death. Overall, 19.3% of patients died. Multivariate analysis did not identify independent mortality predictors. Conclusions: Dengue-associated HLH predominantly affects young individuals and carries significant mortality. Key indicators of poor prognosis include hepatic dysfunction and the presence of shock or organ failure. Early recognition and prompt immunomodulatory treatment, particularly corticosteroids, may improve outcomes. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

26 pages, 5325 KiB  
Article
Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models
by I Gede Nyoman Mindra Jaya, Yudhie Andriyana, Bertho Tantular, Sinta Septi Pangastuti and Farah Kristiani
Sustainability 2025, 17(15), 6777; https://doi.org/10.3390/su17156777 - 25 Jul 2025
Viewed by 356
Abstract
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network [...] Read more.
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM (CNN–LSTM), and a Bayesian spatiotemporal model—using monthly dengue incidence data from 2009 to 2023 in Bandung City, Indonesia. Model performance was assessed using MAE, sMAPE, RMSE, and Pearson’s correlation (R). Among all models, the Bayesian spatiotemporal model achieved the best performance, with the lowest MAE (5.543), sMAPE (62.137), and RMSE (7.482), and the highest R (0.723). While SARIMA and XGBoost showed signs of overfitting, the Bayesian model not only delivered more accurate forecasts but also produced spatial risk estimates and identified high-risk hotspots via exceedance probabilities. These features make it particularly valuable for developing early warning systems and guiding targeted public health interventions, supporting the broader goals of sustainable disease management. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

14 pages, 1214 KiB  
Article
Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti
by Eduarda Florencio Santos, Wevertton Marllon Anselmo, Eurico Eduardo Pinto de Lemos, Júlio César Ribeiro de Oliveira Farias de Aguiar, Ana Carla da Silva, Fábio Henrique Galdino dos Santos, Camila Caroline Lopes Arruda, João Vitor Castro Aguiar, José Jorge Almeida de Andrade, Suyana Karolyne Lino da Rocha, Liderlânio de Almeida Araújo, Paulo Gomes Pereira Júnior, Caroline Francisca de Oliveira Albuquerque, Edymilaís da Silva Sousa, Gerlan Lino dos Santos, Tamires Zuleide da Conceição, Leonardo Arcanjo de Andrade, Luiz Alberto Lira Soares, Magda Rhayanny Assunção Ferreira and Daniela Maria do Amaral Ferraz Navarro
Molecules 2025, 30(15), 3116; https://doi.org/10.3390/molecules30153116 - 25 Jul 2025
Viewed by 315
Abstract
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance [...] Read more.
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance to synthetic insecticides, essential oils from plants constitute an ecologically viable alternative for the control of this vector. The aim of the present study was to investigate the larvicidal activity of the essential oil (EO), aqueous extract, rutin, and hydrolate from the leaves of Myrciaria floribunda against Aedes aegypti larvae in the initial L4 stage. The yield of EO was 0.47%. Thirty-seven chemical constituents were identified and quantified using chromatographic methods. The major constituents were (E)-caryophyllene (27.35%), 1,8-cineole (11.25%), β-selinene (4.92%), and α-muurolene (4.92%). In the larvicidal tests, the lethal concentration (LC50) was 201.73 ppm for the essential oil, 15.85% for the aqueous extract, and 22.46 ppm for rutin. The hydrolate had no larvicidal activity. The compounds that exhibited larvicidal activity against Aedes aegypti constitute a promising option for the development of natural formulations to diminish the propagation of this vector. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Graphical abstract

20 pages, 1477 KiB  
Review
CRISPR/Cas13-Based Anti-RNA Viral Approaches
by Xiaoying Tan, Juncong Li, Baolong Cui, Jingjing Wu, Karl Toischer, Gerd Hasenfuß and Xingbo Xu
Genes 2025, 16(8), 875; https://doi.org/10.3390/genes16080875 - 25 Jul 2025
Viewed by 353
Abstract
RNA viruses pose significant threats to global health, causing diseases such as COVID-19, HIV/AIDS, influenza, and dengue. These viruses are characterized by high mutation rates, rapid evolution, and the ability to evade traditional antiviral therapies, making effective treatment and prevention particularly challenging. In [...] Read more.
RNA viruses pose significant threats to global health, causing diseases such as COVID-19, HIV/AIDS, influenza, and dengue. These viruses are characterized by high mutation rates, rapid evolution, and the ability to evade traditional antiviral therapies, making effective treatment and prevention particularly challenging. In recent years, CRISPR/Cas13 has emerged as a promising antiviral tool due to its ability to specifically target and degrade viral RNA. Unlike conventional antiviral strategies, Cas13 functions at the RNA level, providing a broad-spectrum and programmable approach to combating RNA viruses. Its flexibility allows for rapid adaptation of guide RNAs to counteract emerging viral variants, making it particularly suitable for highly diverse viruses such as SARS-CoV-2 and HIV. This review discusses up-to-date applications of Cas13 in targeting a wide range of RNA viruses, including SARS-CoV-2, HIV, dengue, influenza, and other RNA viruses, focusing on its therapeutic potential. Preclinical studies have demonstrated Cas13’s efficacy in degrading viral RNA and inhibiting replication, with applications spanning prophylactic interventions to post-infection treatments. However, challenges such as collateral cleavage, inefficient delivery, potential immunogenicity, and the development of an appropriate ethical framework must be addressed before clinical translation. Future research should focus on optimizing crRNA design, improving delivery systems, and conducting rigorous preclinical evaluations to enhance specificity, safety, and therapeutic efficacy. With continued advancements, Cas13 holds great promise as a revolutionary antiviral strategy, offering novel solutions to combat some of the world’s most persistent viral threats. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

9 pages, 650 KiB  
Case Report
Beyond the Fever: A Serial Report on Moderate to Severe Murine Typhus Cases and Diagnostic Hurdles in Indonesia
by Velma Herwanto, Sandra Utami Widiastuti, Gunawan and Khie Chen Lie
Trop. Med. Infect. Dis. 2025, 10(8), 204; https://doi.org/10.3390/tropicalmed10080204 - 23 Jul 2025
Viewed by 229
Abstract
(1) Background: Murine typhus, caused by Rickettsia typhi, is a neglected rickettsial disease and an underdiagnosed cause of acute febrile illness (AFI), particularly in endemic regions such as Indonesia. (2) Case description: We report a case series of four patients presenting with [...] Read more.
(1) Background: Murine typhus, caused by Rickettsia typhi, is a neglected rickettsial disease and an underdiagnosed cause of acute febrile illness (AFI), particularly in endemic regions such as Indonesia. (2) Case description: We report a case series of four patients presenting with AFI of less than seven days in duration. Three patients were admitted with moderate disease, while one presented with septic shock with the macrophage activation-like syndrome (MALS) phenotype. Common clinical features included myalgia and headache; additional symptoms included cough, sore throat, and abdominal pain. Laboratory findings revealed bicytopenia, elevated transaminases, and raised inflammatory and bacterial infection markers. Common tropical infections—dengue, typhoid fever, and leptospirosis—and other potential sources of infection were excluded early during hospitalization. Diagnosis was confirmed by nucleic acid amplification testing (NAAT), which detected R. typhi in all patients. Doxycycline was initiated following confirmation, leading to defervescence within 36–48 h. (3) Conclusions: Murine typhus remains an underrecognized cause of febrile illness in Indonesia. In the near future, the inclusion of rickettsial testing in the diagnostic protocol of AFI will be crucial, as it enables timely administration of effective, low-cost treatment. Full article
Show Figures

Figure 1

31 pages, 1168 KiB  
Article
A Seasonal Transmuted Geometric INAR Process: Modeling and Applications in Count Time Series
by Aishwarya Ghodake, Manik Awale, Hassan S. Bakouch, Gadir Alomair and Amira F. Daghestani
Mathematics 2025, 13(15), 2334; https://doi.org/10.3390/math13152334 - 22 Jul 2025
Viewed by 327
Abstract
In this paper, the authors introduce the transmuted geometric integer-valued autoregressive model with periodicity, designed specifically to analyze epidemiological and public health time series data. The model uses a transmuted geometric distribution as a marginal distribution of the process. It also captures varying [...] Read more.
In this paper, the authors introduce the transmuted geometric integer-valued autoregressive model with periodicity, designed specifically to analyze epidemiological and public health time series data. The model uses a transmuted geometric distribution as a marginal distribution of the process. It also captures varying tail behaviors seen in disease case counts and health data. Key statistical properties of the process, such as conditional mean, conditional variance, etc., are derived, along with estimation techniques like conditional least squares and conditional maximum likelihood. The ability to provide k-step-ahead forecasts makes this approach valuable for identifying disease trends and planning interventions. Monte Carlo simulation studies confirm the accuracy and reliability of the estimation methods. The effectiveness of the proposed model is analyzed using three real-world public health datasets: weekly reported cases of Legionnaires’ disease, syphilis, and dengue fever. Full article
(This article belongs to the Special Issue Applied Statistics in Real-World Problems)
Show Figures

Figure 1

23 pages, 2202 KiB  
Article
Afucosylated IgG Promote Thrombosis in Mouse Injected with SARS-CoV-2 Spike Expressing Megakaryocytes
by Meryem Mabrouk, Farah Atifi, Hicham Wahnou, Afaf Allaoui, Nabil Zaid, Abdallah Naya, Ejaife O. Agbani, Loubna Khalki, Meriem Khyatti, Youssef Tijani, Khadija Akarid, Damien Arnoult, Haissam Abou-Saleh, Othman El Faqer, Salma Labied, Mounia Ammara, Fadila Guessous, Farid Jalali and Younes Zaid
Int. J. Mol. Sci. 2025, 26(14), 7002; https://doi.org/10.3390/ijms26147002 - 21 Jul 2025
Viewed by 461
Abstract
Despite the prevalence of fucosylated IgG in plasma, specific IgGs with low core fucosylation sporadically emerge in response to virus infections and blood cell alloantigens. This low fucosylation of IgG is implicated in the pathogenesis of SARS-CoV-2 and dengue infections. In COVID-19, the [...] Read more.
Despite the prevalence of fucosylated IgG in plasma, specific IgGs with low core fucosylation sporadically emerge in response to virus infections and blood cell alloantigens. This low fucosylation of IgG is implicated in the pathogenesis of SARS-CoV-2 and dengue infections. In COVID-19, the presence of IgGs with low core fucosylation (afucosylated IgGs) targeting spike protein predicts disease progression to a severe form and actively mediates this progression. This study reveals that SARS-CoV-2 infection of megakaryocytes promotes the generation of pathogenic afucosylated anti-spike IgGs, leading to outcomes, such as pulmonary vascular thrombosis, acute lung injury, and mortality in FcγRIIa-transgenic mice. Platelets from mice injected with virus-infected human megakaryocytes express significant activation biomarkers, indicating a direct link between the immune response and platelet activation. Mice injected with virus-infected human megakaryocytes demonstrate an elevated rate of thrombus formation induced by FeCl3 (4%) and a reduction in bleeding time, emphasizing the intricate interplay of viral infection, immune response, and hemostatic complications. Treatment with inhibitors targeting FcγRIIa, serotonin, or complement anaphylatoxins of mice injected with spike-expressing MKs successfully prevents observed platelet activation, thrombus formation, and bleeding abnormalities, offering potential therapeutic strategies for managing severe outcomes associated with afucosylated IgGs in COVID-19 and related disorders. Full article
(This article belongs to the Special Issue The Molecular Role of Platelets in Human Diseases)
Show Figures

Figure 1

Back to TopTop