ijms-logo

Journal Browser

Journal Browser

Advanced Perspectives on Virus–Host Interactions

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 1995

Special Issue Editor

Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Interests: virus; host; structure; biology; cells; biochemistry; protein; gene; vaccines; immunology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Viruses possess remarkable adaptability, enabling them to infect diverse hosts ranging from bacteria to humans. These interactions underlie numerous infectious diseases, including SARS-CoV-2, influenza, AIDS, and various zoonotic illnesses, with profound societal and healthcare impacts. Despite considerable progress in virology, our understanding of the dynamic interplay between viruses and hosts remains incomplete. Elucidating these processes is critical in developing innovative strategies for prevention, diagnosis, and therapeutic intervention.

This Special Issue will provide a comprehensive platform for exploring the molecular, cellular, and systemic aspects of virus–host interactions, focusing on how viruses manipulate host cellular machinery, evade immune responses, and shape host physiology. By highlighting groundbreaking research and reviews, we aim to deepen the understanding of these mechanisms and their implications for viral pathogenesis and host health.

Scope and Key Themes:

Molecular and Cellular Interactions: Studies unveiling the mechanisms behind viral entry, and replication and the manipulation of host pathways.

Immune Evasion and Manipulation: Insights into how viruses evade innate and adaptive immune responses and exploit host immunity.

Host Signaling and Gene Regulation: Exploration of host gene expression modulation and signaling pathways in response to viral infection.

Pathogenesis and Disease Progression: Investigations linking virus–host interactions to clinical outcomes, including acute and chronic infections.

Innovative Therapeutic Strategies: Novel interventions targeting virus–host interactions in disease management.

We invite original research articles, comprehensive reviews, and methodological studies that address the intricate relationships between viruses and their hosts. For this Special Issue, we also welcome interdisciplinary approaches that bridge molecular biology, immunology, and clinical research, as well as studies highlighting implications for antiviral drug and vaccine development.

Dr. Qibin Geng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • viral manipulation of host metabolics
  • virus–host interactions
  • host–pathogen co-evolution
  • susceptibility and resistance to viral infection
  • novel antiviral strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5153 KiB  
Article
A Hypovirulence-Associated Partitivirus and Re-Examination of Horizontal Gene Transfer Between Partitiviruses and Cellular Organisms
by Ting Ye, Han Li, Du Hai, Zhima Zhaxi, Jie Duan, Yang Lin, Jiatao Xie, Jiasen Cheng, Bo Li, Tao Chen, Xiao Yu, Xueliang Lyu, Xueqiong Xiao, Yanping Fu and Daohong Jiang
Int. J. Mol. Sci. 2025, 26(8), 3853; https://doi.org/10.3390/ijms26083853 - 18 Apr 2025
Viewed by 150
Abstract
Previous research has unearthed the integration of the coat protein (CP) gene from alphapartitivirus into plant genomes. Nevertheless, the prevalence of this horizontal gene transfer (HGT) between partitiviruses and cellular organisms remains an enigma. In our investigation, we discovered a novel [...] Read more.
Previous research has unearthed the integration of the coat protein (CP) gene from alphapartitivirus into plant genomes. Nevertheless, the prevalence of this horizontal gene transfer (HGT) between partitiviruses and cellular organisms remains an enigma. In our investigation, we discovered a novel partitivirus, designated Sclerotinia sclerotiorum alphapartitivirus 1 (SsAPV1), from a hypovirulent strain of Sclerotinia sclerotiorum. Intriguingly, we traced homologs of the SsAPV1 CP to plant genomes, including Helianthus annuus. To delve deeper, we employed the CP and RNA-dependent RNA polymerase (RdRP) sequences of partitiviruses as “bait” to search the NCBI database for similar sequences. Our search unveiled a widespread occurrence of HGT between viruses from all five genera within the family Partitiviridae and other cellular organisms. Notably, numerous CP-like and RdRP-like genes were identified in the genomes of plants, protozoa, animals, fungi, and even, for the first time, in an archaeon. The majority of CP and RdRP genes were integrated into plant and insect genomes, respectively. Furthermore, we detected DNA fragments originating from the SsAPV1 RNA genome in some subcultures of virus-infected strains. It suggested that SsAPV1 RdRP may possesses reverse transcriptase activity, facilitating the integration of viral genes into cellular organism genomes, and this function requires further confirmation. Our study not only offers a hypovirulence-associated partitivirus with implications for fungal disease control but also sheds light on the extensive integration events between partitiviruses and cellular organisms and enhances our comprehension of the origins, evolution, and ecology of partitiviruses, as well as the genome evolution of cellular organisms. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 2350 KiB  
Review
Current Perspectives on Functional Involvement of Micropeptides in Virus–Host Interactions
by Haowen Sun, Rongrong Gu, Tingting Tang, Kul Raj Rai and Ji-Long Chen
Int. J. Mol. Sci. 2025, 26(8), 3651; https://doi.org/10.3390/ijms26083651 - 12 Apr 2025
Viewed by 616
Abstract
Micropeptides (miPEPs), encoded by short open reading frames (sORFs) within various genomic regions, have recently emerged as critical regulators of multiple biological processes. In particular, these small molecules are now increasingly being recognized for their role in modulating viral replication, pathogenesis, and host [...] Read more.
Micropeptides (miPEPs), encoded by short open reading frames (sORFs) within various genomic regions, have recently emerged as critical regulators of multiple biological processes. In particular, these small molecules are now increasingly being recognized for their role in modulating viral replication, pathogenesis, and host immune responses. Both host miPEPs and virus-derived miPEPs have been noted for their ability to regulate virus–host interactions through diversified mechanisms such as altering protein stability and modulating protein–protein interactions. Although thousands of sORFs have been annotated as having the potential to encode miPEPs, only a small number have been experimentally validated so far, with some directly linked to virus–host interactions and a small subset associated with immune modulation, indicating that the investigation of miPEPs is still in its infancy. The systematic identification, translational status assessment, in-depth characterization, and functional analysis of a substantial fraction of sORFs encoding miPEPs remain largely underexplored. Further studies are anticipated to uncover the intricate mechanisms underlying virus–host interactions, host immune modulation, and the broader biological functions of miPEPs. This article will review the emerging roles of miPEPs in virus–host interactions and host immunity, and discuss the challenges and future perspectives of miPEP studies. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

Back to TopTop