Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = Chaotic search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 238
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 307
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

23 pages, 2233 KiB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Viewed by 203
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

49 pages, 5383 KiB  
Article
Chaotic Mountain Gazelle Optimizer Improved by Multiple Oppositional-Based Learning Variants for Theoretical Thermal Design Optimization of Heat Exchangers Using Nanofluids
by Oguz Emrah Turgut, Mustafa Asker, Hayrullah Bilgeran Yesiloz, Hadi Genceli and Mohammad AL-Rawi
Biomimetics 2025, 10(7), 454; https://doi.org/10.3390/biomimetics10070454 - 10 Jul 2025
Viewed by 260
Abstract
This theoretical research study proposes a novel hybrid algorithm that integrates an improved quasi-dynamical oppositional learning mutation scheme into the Mountain Gazelle Optimization method, augmented with chaotic sequences, for the thermal and economical design of a shell-and-tube heat exchanger operating with nanofluids. The [...] Read more.
This theoretical research study proposes a novel hybrid algorithm that integrates an improved quasi-dynamical oppositional learning mutation scheme into the Mountain Gazelle Optimization method, augmented with chaotic sequences, for the thermal and economical design of a shell-and-tube heat exchanger operating with nanofluids. The Mountain Gazelle Optimizer is a recently developed metaheuristic algorithm that simulates the foraging behaviors of Mountain Gazelles. However, it suffers from premature convergence due to an imbalance between its exploration and exploitation mechanisms. A two-step improvement procedure is implemented to enhance the overall search efficiency of the original algorithm. The first step concerns substituting uniformly random numbers with chaotic numbers to refine the solution quality to better standards. The second step is to develop a novel manipulation equation that integrates different variants of quasi-dynamic oppositional learning search schemes, guided by a novel intelligently devised adaptive switch mechanism. The efficiency of the proposed algorithm is evaluated using the challenging benchmark functions from various CEC competitions. Finally, the thermo-economic design of a shell-and-tube heat exchanger operated with different nanoparticles is solved by the proposed improved metaheuristic algorithm to obtain the optimal design configuration. The predictive results indicate that using water + SiO2 instead of ordinary water as the refrigerant on the tube side of the heat exchanger reduces the total cost by 16.3%, offering the most cost-effective design among the configurations compared. These findings align with the demonstration of how biologically inspired metaheuristic algorithms can be successfully applied to engineering design. Full article
Show Figures

Graphical abstract

17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 196
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

16 pages, 1842 KiB  
Article
A Fault Recovery Scheme for Active Distribution Networks Based on the Chaotic Binary Sparrow Search Algorithm Considering Operational Risks
by Weijie Huang, Gang Chen, Xiaoming Jiang, Xiong Xiao, Yiyi Chen and Chong Liu
Processes 2025, 13(7), 2128; https://doi.org/10.3390/pr13072128 - 4 Jul 2025
Viewed by 285
Abstract
In order to improve the reliability of power systems with high penetration of distributed generation (DG), this paper proposes a fault recovery scheme for active distribution networks based on the chaotic binary sparrow search algorithm, taking into account the operational risks. First, the [...] Read more.
In order to improve the reliability of power systems with high penetration of distributed generation (DG), this paper proposes a fault recovery scheme for active distribution networks based on the chaotic binary sparrow search algorithm, taking into account the operational risks. First, the connection line is equivalent to the virtual DG, which simplifies the comprehensive power supply recovery problem to a generalized DG-based islanding problem. Secondly, to adequately quantify the risk of islanding during the fault period, the islanding operation risk index is defined from the perspective of power balance and voltage stability. Next, a generalized dynamic islanding strategy for distribution networks considering operational risks is proposed. This strategy can dynamically adjust the island range according to the risk factors, such as DG output, the change of load, and node voltage levels. Then, the multi-objective function is established by comprehensively considering the factors of restoring important loads, the number of switch actions, and the network loss. The binary sparrow search algorithm is used to solve the problem and outputs the optimal fault recovery strategy for the active distribution network. Finally, the simulation experiments and analysis are carried out based on an IEEE40 node distribution network. The simulation experiments and analysis show that the solution speed of the proposed algorithm reaches the second level, which is 10 s to 70 s faster than that of the heuristic and genetic algorithms, and the load recovery rate of the fault recovery strategy is also higher. Full article
(This article belongs to the Special Issue Smart Optimization Techniques for Microgrid Management)
Show Figures

Figure 1

44 pages, 6854 KiB  
Article
A Novel Improved Dung Beetle Optimization Algorithm for Collaborative 3D Path Planning of UAVs
by Xiaojun Zheng, Rundong Liu and Siyang Li
Biomimetics 2025, 10(7), 420; https://doi.org/10.3390/biomimetics10070420 - 29 Jun 2025
Viewed by 314
Abstract
In this study, we propose a novel improved Dung Beetle Optimizer called Environment-aware Chaotic Force-field Dung Beetle Optimizer (ECFDBO). To address DBO’s existing tendency toward premature convergence and insufficient precision in high-dimensional, complex search spaces, ECFDBO integrates three key improvements: a chaotic perturbation-based [...] Read more.
In this study, we propose a novel improved Dung Beetle Optimizer called Environment-aware Chaotic Force-field Dung Beetle Optimizer (ECFDBO). To address DBO’s existing tendency toward premature convergence and insufficient precision in high-dimensional, complex search spaces, ECFDBO integrates three key improvements: a chaotic perturbation-based nonlinear contraction strategy, an intelligent boundary-handling mechanism, and a dynamic attraction–repulsion force-field mutation. These improvements reinforce both the algorithm’s global exploration capability and its local exploitation accuracy. We conducted 30 independent runs of ECFDBO on the CEC2017 benchmark suite. Compared with seven classical and novel metaheuristic algorithms, ECFDBO achieved statistically significant improvements in multiple performance metrics. Moreover, by varying problem dimensionality, we demonstrated its robust global optimization capability for increasingly challenging tasks. We further conducted the Wilcoxon and Friedman tests to assess the significance of performance differences of the algorithms and to establish an overall ranking. Finally, ECFDBO was applied to a 3D path planning simulation in UAVs for safe path planning in complex environments. Against both the Dung Beetle Optimizer and a multi-strategy DBO (GODBO) algorithm, ECFDBO met the global optimality requirements for cooperative UAV planning and showed strong potential for high-dimensional global optimization applications. Full article
Show Figures

Graphical abstract

36 pages, 2046 KiB  
Article
A Hybrid Multi-Strategy Optimization Metaheuristic Algorithm for Multi-Level Thresholding Color Image Segmentation
by Amir Seyyedabbasi
Appl. Sci. 2025, 15(13), 7255; https://doi.org/10.3390/app15137255 - 27 Jun 2025
Viewed by 241
Abstract
Hybrid metaheuristic algorithms have been widely used to solve global optimization problems, making the concept of hybridization increasingly important. This study proposes a new hybrid multi-strategy metaheuristic algorithm named COSGO, which combines the strengths of grey wolf optimization (GWO) and Sand Cat Swarm [...] Read more.
Hybrid metaheuristic algorithms have been widely used to solve global optimization problems, making the concept of hybridization increasingly important. This study proposes a new hybrid multi-strategy metaheuristic algorithm named COSGO, which combines the strengths of grey wolf optimization (GWO) and Sand Cat Swarm Optimization (SCSO) to effectively address global optimization tasks. Additionally, a chaotic opposition-based learning strategy is incorporated to enhance the efficiency and global search capability of the algorithm. One of the main challenges in metaheuristic algorithms is premature convergence or getting trapped in local optima. To overcome this, the proposed strategy is designed to improve exploration and help the algorithm escape local minima. As a real-world application, multi-level thresholding for color image segmentation—a well-known problem in image processing—is studied. The COSGO algorithm is applied using two objective functions, Otsu’s method and Kapur’s entropy, to determine optimal multi-level thresholds. Experiments are conducted on 10 images from the widely used BSD500 dataset. The results show that the COSGO algorithm achieves competitive performance compared to other State-of-the-Art algorithms. To further evaluate its effectiveness, the CEC2017 benchmark functions are employed, and a Friedman ranking test is used to statistically analyze the results. Full article
(This article belongs to the Topic Color Image Processing: Models and Methods (CIP: MM))
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Smart Grid Self-Healing Enhancement E-SOP-Based Recovery Strategy for Flexible Interconnected Distribution Networks
by Wanjun Li, Zhenzhen Xu, Meifeng Chen and Qingfeng Wu
Energies 2025, 18(13), 3358; https://doi.org/10.3390/en18133358 - 26 Jun 2025
Viewed by 286
Abstract
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain [...] Read more.
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain power flow control capabilities but also enhance system supply performance, providing a novel approach to AC distribution network fault recovery. To fully leverage the advantages of E-SOPs in handling faults in flexible interconnected AC distribution networks (FIDNs), this paper proposes an E-SOP-based FIDN islanding recovery method. First, the basic structure and control modes of SOPs for AC distribution networks are elaborated, and the E-SOP-based AC distribution network structure is analyzed. Second, with maximizing total load recovery as the objective function, the constraints of E-SOPs are comprehensively considered, and recovery priorities are established based on load importance classification. Then, a multi-dimensional improvement of the dung beetle optimizer (DBO) algorithm is implemented through Logistic chaotic mapping, adaptive parameter adjustment, elite learning mechanisms, and local search strategies, resulting in an efficient solution for AC distribution network power supply restoration. Finally, the proposed FIDN islanding partitioning and fault recovery methods are validated on a double-ended AC distribution network structure. Simulation results demonstrate that the improved DBO (IDBO) algorithm exhibits a superior optimization performance and the proposed method effectively enhances the load recovery capability of AC distribution networks, significantly improving the self-healing ability and operational reliability of AC distribution systems. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
Show Figures

Figure 1

26 pages, 3284 KiB  
Article
Improved African Vulture Optimization Algorithm for Optimizing Nonlinear Regression in Wind-Tunnel-Test Temperature Prediction
by Lihua Shen, Xu Cui, Biling Wang, Qiang Li and Jin Guo
Processes 2025, 13(7), 1956; https://doi.org/10.3390/pr13071956 - 20 Jun 2025
Viewed by 239
Abstract
The thermal data of the hypersonic wind tunnel field accurately reflect the aerodynamic performance and key parameters of the aircraft model. However, the prediction of the temperature in hypersonic wind tunnels has problems such as a large delay, nonlinearity and multivariable coupling. In [...] Read more.
The thermal data of the hypersonic wind tunnel field accurately reflect the aerodynamic performance and key parameters of the aircraft model. However, the prediction of the temperature in hypersonic wind tunnels has problems such as a large delay, nonlinearity and multivariable coupling. In order to reduce the influence brought by temperature changes and improve the accuracy of temperature prediction in the field control of hypersonic wind tunnels, this paper first combines kernel principal component analysis (KPCA) with phase space reconstruction to preprocess the temperature data set of wind tunnel tests, and the processed data set is used as the input of the temperature-prediction model. Secondly, support vector regression is applied to the construction of the temperature prediction model for the hypersonic wind-tunnel temperature field. Meanwhile, aiming at the problem of difficult parameter-combination selection in support vector regression machines, an Improved African Vulture Optimization Algorithm (IAVOA) based on adaptive chaotic mapping and local search enhancement is proposed to conduct combination optimization of parameters in support vector regression. The improved African Vulture Optimization Algorithm (AVOA) proposed in this paper was compared and analyzed with the traditional AVOA, PSO (Particle Swarm Optimization Algorithm) and GWO (Grey Wolf Optimizer) algorithms through 10 basic test functions, and the superiority of the improved AVOA algorithm proposed in this paper in optimizing the parameters of the support vector regression machine was verified in the actual temperature data in wind-tunnel field control. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 8629 KiB  
Article
3D UAV Route Optimization in Complex Environments Using an Enhanced Artificial Lemming Algorithm
by Yuxuan Xie, Zhe Sun, Kai Yuan and Zhixin Sun
Symmetry 2025, 17(6), 946; https://doi.org/10.3390/sym17060946 - 13 Jun 2025
Cited by 1 | Viewed by 308
Abstract
The use of UAVs for logistics delivery has become a hot topic in current research, and how to plan a reasonable delivery route is the key to the problem. Therefore, this paper proposes a multi-environment logistics delivery route planning model that is based [...] Read more.
The use of UAVs for logistics delivery has become a hot topic in current research, and how to plan a reasonable delivery route is the key to the problem. Therefore, this paper proposes a multi-environment logistics delivery route planning model that is based on UAVs, is characterized by a 3D environment model, and aims at the shortest delivery route with minimum flight undulation. In order to find the optimal route in various environments, a multi-strategy improved artificial lemming algorithm, which integrates the Cubic chaotic map initialization, double adaptive t-distribution perturbation, and population dynamic optimization, is proposed. The symmetric nature of the t-distribution ensures that the lemmings conduct extensive searches in both directions within the solution space, thus improving the convergence speed and preventing them from falling into local optimal solutions. Through data experiments and simulation analysis, the improved algorithm can be successfully applied to the 3D route planning model, and the route quality is superior. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Optimization Algorithm and Its Applications)
Show Figures

Figure 1

20 pages, 402 KiB  
Article
Thermodynamics of Fluid Elements in the Context of Turbulent Isothermal Self-Gravitating Molecular Clouds
by Sava Donkov, Ivan Zh. Stefanov and Valentin Kopchev
Universe 2025, 11(6), 184; https://doi.org/10.3390/universe11060184 - 6 Jun 2025
Viewed by 544
Abstract
In the present work, we suggest a new approach for studying the equilibrium states of an hydrodynamic isothermal turbulent self-gravitating system as a statistical model for a molecular cloud. The main hypothesis is that the local turbulent motion of the fluid elements is [...] Read more.
In the present work, we suggest a new approach for studying the equilibrium states of an hydrodynamic isothermal turbulent self-gravitating system as a statistical model for a molecular cloud. The main hypothesis is that the local turbulent motion of the fluid elements is purely chaotic and can be regarded as a perfect gas. Then, the turbulent kinetic energy per fluid element can be substituted for the temperature of the chaotic motion of the fluid elements. Using this, we write down effective formulae for the internal and total the energy and for the first principal of thermodynamics. Then, we obtain expressions for the entropy, the free energy, and the Gibbs potential. Searching for equilibrium states, we explore two possible systems: the canonical ensemble and the grand canonical ensemble. Studying the former, we conclude that there is no extrema for the free energy. Through the latter system, we obtain a minimum of the Gibbs potential when the macro-temperature and pressure of the cloud are equal to those of the surrounding medium. This minimum corresponds to a possible stable local equilibrium state of our system. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Task Allocation and Path Planning Method for Unmanned Underwater Vehicles
by Feng Liu, Wei Xu, Zhiwen Feng, Changdong Yu, Xiao Liang, Qun Su and Jian Gao
Drones 2025, 9(6), 411; https://doi.org/10.3390/drones9060411 - 6 Jun 2025
Viewed by 486
Abstract
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs [...] Read more.
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs in complicated marine environments. However, existing methods still have significant room for improvement in handling obstacles, multi-task coordination, and other complex problems. In order to overcome these issues, we put forward a task allocation and path planning method for UUVs. First, we introduce a task allocation mechanism based on an Improved Grey Wolf Algorithm (IGWA). This mechanism comprehensively considers factors such as target value, distance, and UUV capability constraints to achieve efficient and reasonable task allocation among UUVs. To enhance the search efficiency and accuracy of task allocation, a Circle chaotic mapping strategy is incorporated into the traditional GWA to improve population diversity. Additionally, a differential evolution mechanism is integrated to enhance local search capabilities, effectively mitigating premature convergence issues. Second, an improved RRT* algorithm termed GR-RRT* is employed for UUV path planning. By designing a guidance strategy, the sampling probability near target points follows a two-dimensional Gaussian distribution, ensuring obstacle avoidance safety while reducing redundant sampling and improving planning efficiency. Experimental results demonstrate that the proposed task allocation mechanism and improved path planning algorithm exhibit significant advantages in task completion rate and path optimization efficiency. Full article
(This article belongs to the Special Issue Advances in Intelligent Coordination Control for Autonomous UUVs)
Show Figures

Figure 1

21 pages, 1573 KiB  
Article
Photovoltaic Panel Parameter Estimation Enhancement Using a Modified Quasi-Opposition-Based Killer Whale Optimization Technique
by Cilina Touabi, Abderrahmane Ouadi, Hamid Bentarzi and Abdelmadjid Recioui
Sustainability 2025, 17(11), 5161; https://doi.org/10.3390/su17115161 - 4 Jun 2025
Viewed by 389
Abstract
Photovoltaic (PV) energy generation has seen rapid growth in recent years due to its sustainability and environmental benefits. However, accurately identifying PV panel parameters is crucial for enhancing system performance, especially under varying environmental conditions. This study presents an enhanced approach for estimating [...] Read more.
Photovoltaic (PV) energy generation has seen rapid growth in recent years due to its sustainability and environmental benefits. However, accurately identifying PV panel parameters is crucial for enhancing system performance, especially under varying environmental conditions. This study presents an enhanced approach for estimating PV panel parameters using a Modified Quasi-Opposition-Based Killer Whale Optimization (MQOB-KWO) technique. The research aims to improve parameter extraction accuracy by optimizing the one-diode model (ODM), a widely used representation of PV cells, using a modified metaheuristic optimization technique. The proposed algorithm leverages a Quasi-Opposition-Based Learning (QOBL) mechanism to enhance search efficiency and convergence speed. The methodology involves implementing the MQOB-KWO in MATLAB R2021a and evaluating its effectiveness through experimental I-V data from two unlike photovoltaic panels. The findings are contrasted to established optimization techniques from the literature, such as the original Killer Whale Optimization (KWO), Improved Opposition-Based Particle Swarm Optimization (IOB-PSO), Improved Cuckoo Search Algorithm (ImCSA), and Chaotic Improved Artificial Bee Colony (CIABC). The findings demonstrate that the proposed MQOB-KWO achieves superior accuracy with the lowest Root Mean Square Error (RMSE) compared to other methods, and the lowest error rates (Root Mean Square Error—RMSE, and Integral Absolute Error—IAE) compared to the original KWO, resulting in a better value of the coefficient of determination (R2), hence effectively capturing PV module characteristics. Additionally, the algorithm shows fast convergence, making it suitable for real-time PV system modeling. The study confirms that the proposed optimization technique is a reliable and efficient tool for improving PV parameter estimation, contributing to better system efficiency and operational performance. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 279 KiB  
Article
NTRU-MCF: A Chaos-Enhanced Multidimensional Lattice Signature Scheme for Post-Quantum Cryptography
by Rong Wang, Bo Yuan, Minfu Yuan and Yin Li
Sensors 2025, 25(11), 3423; https://doi.org/10.3390/s25113423 - 29 May 2025
Viewed by 567
Abstract
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the [...] Read more.
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the private key search space, achieving a key space size 2256 for dimensions m2 and rendering brute-force attacks infeasible. By incorporating fractional-order chaotic masks generated via a hyperchaotic Lü system, the scheme introduces nonlinear randomness and robust resistance to physical attacks. Fractional-order chaotic masks, generated via a hyperchaotic Lü system validated through NIST SP 800-22 randomness tests, replace conventional pseudorandom number generators (PRNGs). The sensitivity to initial conditions ensures cryptographic unpredictability, while the use of a fractional-order L hyperchaotic system—instead of conventional pseudorandom number generators (PRNGs)—leverages multiple Lyapunov exponents and initial value sensitivity to embed physically unclonable properties into key generation, effectively mitigating side-channel analysis. Theoretical analysis shows that NTRU-MCF’s security reduces to the Ring Learning with Errors (RLWE) problem, offering superior quantum resistance compared to existing NTRU variants. While its computational and storage complexity suits high-security applications like military and financial systems, it is less suitable for resource-constrained devices. NTRU-MCF provides robust quantum resistance and side-channel defense, advancing PQC for classical computing environments. Full article
Back to TopTop