Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
Abstract
1. Introduction
2. Method
2.1. Improving the Sparrow Optimization Algorithm with Multiple Strategies
- 1.
- The expression of the cubic chaotic mapping function is the following:
- 2.
- The mathematical equation of the butterfly optimization strategy is the following:
- 3.
- The calculation equation for the sine–cosine search strategy is as follows:
2.2. Variational Mode Decomposition Algorithm
2.3. Adaptive Wavelet Packet Threshold Denoising Algorithm
- 1.
- The improved threshold λ can be adaptively set according to the number of decomposition layers, and its expression is the following:
- 2.
- The improved adaptive threshold function can effectively address issues such as biases and discontinuities caused by traditional threshold functions, and its expression is given by the following:
2.4. Evaluation Indicators
3. Result and Analysis
3.1. Experimental Design
3.1.1. Construction of Analog Signals
3.1.2. ISSA Optimizes VMD Parameters
3.1.3. Modal Component Selection Based on Correlation Coefficient
3.1.4. Wavelet Packet Adaptive Threshold Denoising Processing
3.2. Verification of Noise Reduction Effetct
3.2.1. Verification of Noise Reduction for Analog Signals
3.2.2. Verification of Noise Reduction for Measured Signals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fedorovich, A.A.; Loktionova, Y.I.; Zharkikh, E.V.; Gorshkov, A.Y.; Korolev, A.I.; Dadaeva, V.A.; Drapkina, O.M.; Zherebtsov, E.A. Skin microcirculation in middle-aged men with newly diagnosed arterial hypertension according to remote laser Doppler flowmetry data. Microvasc. Res. 2022, 144, 104419. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, A.; Guven, G.; van Baar, M.E.; Trommel, N.; Hofland, H.W.C.; Kuijper, T.M.; Ince, C.; Van der Vlies, C.H. Laser speckle contrast imaging, an alternative to laser doppler imaging in clinical practice of burn wound care: Derivation of a color code. Burns 2023, 49, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, E.; Weidmann, M.; Miyazawa, A.A.; Shun-Shin, M.J.; Leyva, F.; Zegard, A.; Stegemann, B. Laser Doppler flow for the hemodynamic differentiation of tachycardia. Pacing Clin. Electrophysiol. 2023, 46, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Pion, E.; Asam, C.; Feder, A.; Felthaus, O.; Heidekrueger, P.I.; Prantl, L.; Haerteis, S.; Aung, T. Laser speckle contrast analysis (LASCA) technology for the semiquantitative measurement of angiogenesis in in-ovo-tumor-model. Microvasc. Res. 2021, 133, 104072. [Google Scholar] [CrossRef]
- Mauritzon, S.; Ginstman, F.; Hillman, J.; Wårdell, K. Analysis of laser Doppler flowmetry long-term recordings for investigation of cerebral microcirculation during neurointensive care. Front Neurosci 2022, 16, 1030805. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Wei, S.; Ding, H.; Chen, L.-Q. Random Vibration of a Pipe Conveying Fluid under Combined Harmonic and Gaussian White Noise Excitations. Acta Mech. Solida Sin. 2025, 1–14. [Google Scholar] [CrossRef]
- Fedotov, A.A. An Adaptive Method for Correction of the ECG Signal Baseline Drift Using Multiresolution Wavelet Transforms. Biomed. Eng. 2022, 55, 420–424. [Google Scholar] [CrossRef]
- Ullah, H.; Heyat, M.B.B.; Biswas, T.; Neha, N.I.; Raihan, M.S.; Lai, D. An end-to-end motion artifacts reduction method with 2D convolutional de-noising auto-encoders on ECG signals of wearable flexible biosensors. Digit. Signal Process. 2025, 160, 105053. [Google Scholar] [CrossRef]
- Rajan, V.; Varghese, B.; van Leeuwen, T.G.; Steenbergen, W. Review of methodological developments in laser Doppler flowmetry. Lasers Med. Sci. 2009, 24, 269–283. [Google Scholar] [CrossRef]
- Vidhya, C.M.; Maithani, Y.; Singh, J.P. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. Biosensors 2023, 13, 679. [Google Scholar] [CrossRef]
- Islam, M.S.; El-Hajj, A.M.; Alawieh, H.; Dawy, Z.; Abbas, N.; El-Imad, J. EEG mobility artifact removal for ambulatory epileptic seizure prediction applications. Biomed. Signal Process. Control 2020, 55, 101638. [Google Scholar] [CrossRef]
- Castaño Usuga, F.A.; Gissel, C.; Hernández, A.M. Motion Artifact Reduction in Electrocardiogram Signals Through a Redundant Denoising Independent Component Analysis Method for Wearable Health Care Monitoring Systems: Algorithm Development and Validation. J. Med. Internet Res. Med. Inform. 2022, 10, e40826. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.; Van Helleputte, N.; Berset, T.; Geng, D.; Romero, I.; Penders, J.; Van Hoof, C.; Yazicioglu, R.F. Motion artifact removal using cascade adaptive filtering for ambulatory ECG monitoring system. In Proceedings of the 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, 28–30 November 2012. [Google Scholar]
- Geng, D.; Zhao, J.; Wang, C.; Dong, J.; Ning, Q.; Wang, Y. Research on heart rate extraction algorithm in motion state based on normalized least mean square combining ensemble empirical mode decomposition. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J. Biomed. Eng. = Shengwu Yixue Gongchengxue Zazhi 2020, 37, 71–79. [Google Scholar]
- Nayak, A.B.; Shah, A.; Maheshwari, S.; Anand, V.; Chakraborty, S.; Kumar, T.S. An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals. Decis. Anal. J. 2024, 10, 100420. [Google Scholar] [CrossRef]
- Su, B.; Wen, Y.; Liu, Y.; Liao, S.; Fu, J.; Quan, G.; Li, Z. A deep learning method for eliminating head motion artifacts in computed tomography. Med. Phys. 2022, 49, 411–419. [Google Scholar] [CrossRef]
- Vakli, P.; Weiss, B.; Szalma, J.; Barsi, P.; Gyuricza, I.; Kemenczky, P.; Somogyi, E.; Nárai, Á.; Gál, V.; Hermann, P.; et al. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics. Med. Image Anal. 2023, 88, 102850. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Naruka, M.S.; Tewari, G. Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform. J. Shanghai Jiaotong Univ. (Sci.) 2025, 30, 66–80. [Google Scholar] [CrossRef]
- Suo, L.; Peng, T.; Song, S.; Zhang, C.; Wang, Y.; Fu, Y.; Nazir, M.S. Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm. Energy 2023, 276, 127526. [Google Scholar] [CrossRef]
- Liu, M.; Sun, Z.; Li, M. Application of improved wavelet denoising method in low-frequency oscillation analysis of power system. J. Phys. Conf. Ser. 2020, 1633, 12115. [Google Scholar] [CrossRef]
- Skoric, J.; D’Mello, Y.; Plant, D.V. A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography. IEEE J. Transl. Eng. Health Med. 2024, 12, 348–358. [Google Scholar] [CrossRef]
- Sun, B.; Wang, C.; Chen, X.; Zhang, Y.; Shao, H. PPG signal motion artifacts correction algorithm based on feature estimation. Optik 2019, 176, 337–349. [Google Scholar] [CrossRef]
- Hiejima, T.; Nogami, H.; Saito, A.; Ban, K.; Bandara, D.S.V.; Takigawa, R.; Arata, J. Non-wearable pulse rate measurement system using laser Doppler flowmetry with algorithm to eliminate body motion artifacts for masked palm civet (Parguma larvata) during husbandry training. Jpn. J. Appl. Phys. 2023, 62, SG1047. [Google Scholar] [CrossRef]
- Hosni, A.; Atef, M. Remote real-time heart rate monitoring with recursive motion artifact removal using PPG signals from a smartphone camera. Multimed. Tools Appl. 2023, 82, 20571–20588. [Google Scholar] [CrossRef]
- Yahi, A.; Bekkouche, T.; El Hossine Daachi, M.; Diffellah, N. A color image encryption scheme based on 1D cubic map. Optik 2022, 249, 168290. [Google Scholar] [CrossRef]
- He, K.; Zhang, Y.; Wang, Y.-K.; Zhou, R.-H.; Zhang, H.-Z. EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems. Alex. Eng. J. 2024, 87, 543–573. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, J. Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems. Soft Comput. 2021, 25, 11053–11075. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
Modal Component IMF | Waveform Correlation Coefficient R |
---|---|
IMF1 | 0.2386 |
IMF2 | 0.2926 |
IMF3 | 0.8521 |
IMF4 | 0.3125 |
IMF5 | 0.2835 |
IMF6 | 0.2652 |
Original Noise SNR (dB) | SNR (dB) After Noise Reduction | RMSE | Correlation Coefficient R |
---|---|---|---|
−20 | 18.2 | 0.0035 | 0.88 |
−15 | 21.5 | 0.0028 | 0.91 |
−10 | 24.74 | 0.0023 | 0.92 |
−5 | 25.8 | 0.0021 | 0.90 |
0 | 26.1 | 0.0020 | 0.89 |
5 | 25.5 | 0.0022 | 0.87 |
Method | SNR | RMSE | R |
---|---|---|---|
WPTD | 13.8240 | 0.0759 | 0.69 |
VMD | 20.6330 | 0.0075 | 0.83 |
ISSA-VMD | 22.0923 | 0.0058 | 0.88 |
ISSA-VMD-AWPTD | 24.1111 | 0.0023 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Fang, Y.; Cui, J.; Xu, J.; Lv, M.; Tang, T.; Ma, J.; Cai, C. Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices. Electronics 2025, 14, 2761. https://doi.org/10.3390/electronics14142761
Zhu Y, Fang Y, Cui J, Xu J, Lv M, Tang T, Ma J, Cai C. Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices. Electronics. 2025; 14(14):2761. https://doi.org/10.3390/electronics14142761
Chicago/Turabian StyleZhu, Yonglong, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma, and Chengyao Cai. 2025. "Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices" Electronics 14, no. 14: 2761. https://doi.org/10.3390/electronics14142761
APA StyleZhu, Y., Fang, Y., Cui, J., Xu, J., Lv, M., Tang, T., Ma, J., & Cai, C. (2025). Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices. Electronics, 14(14), 2761. https://doi.org/10.3390/electronics14142761