Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = B. adusta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1275 KiB  
Article
Bioprospecting Marine Fungi from the Plastisphere: Osteogenic and Antiviral Activities of Fungal Extracts
by Matteo Florio Furno, Vincent Laizé, Irene Arduino, Giang Nam Pham, Federica Spina, Mohamed Mehiri, David Lembo, Paulo J. Gavaia and Giovanna Cristina Varese
Mar. Drugs 2025, 23(3), 115; https://doi.org/10.3390/md23030115 - 7 Mar 2025
Cited by 2 | Viewed by 1344
Abstract
Marine microplastics (MPs) represent a novel ecological niche, populated by fungi with high potential for pharmaceutical discovery. This study explores the bioactivity of fungal strains isolated from MPs in Mediterranean sediments, focusing on their osteogenic and antiviral activities. Crude extracts prepared via solid-state [...] Read more.
Marine microplastics (MPs) represent a novel ecological niche, populated by fungi with high potential for pharmaceutical discovery. This study explores the bioactivity of fungal strains isolated from MPs in Mediterranean sediments, focusing on their osteogenic and antiviral activities. Crude extracts prepared via solid-state and submerged-state fermentation were tested for their effects on extracellular matrix mineralization in vitro and bone growth in zebrafish larvae, and for their activity against the respiratory syncytial virus (RSV) and herpes simplex virus type 2 (HSV-2). Several extracts exhibited significant mineralogenic and osteogenic activities, with Aspergillus jensenii MUT6581 and Cladosporium halotolerans MUT6558 being the most performing ones. Antiviral assays identified extracts from A. jensenii MUT6581 and Bjerkandera adusta MUT6589 as effective against RSV and HSV-2 at different extents, with no cytotoxic effect. Although chemical profiling of A. jensenii MUT6581 extract led to the isolation of decumbenones A and B, they did not reproduce the observed bioactivities, suggesting the involvement of other active compounds or synergistic effects. These results highlight the plastisphere as a valuable resource for novel bioactive compounds and suggest the need for further fractionation and characterization to identify the molecules responsible for these promising activities. Full article
Show Figures

Figure 1

17 pages, 3358 KiB  
Article
Mycoremediation of Synthetic Azo Dyes by White-Rot Fungi Grown on Diary Waste: A Step toward Sustainable and Circular Bioeconomy
by Irene Gugel, Daniela Summa, Stefania Costa, Stefano Manfredini, Silvia Vertuani, Filippo Marchetti and Elena Tamburini
Fermentation 2024, 10(2), 80; https://doi.org/10.3390/fermentation10020080 - 25 Jan 2024
Cited by 5 | Viewed by 3051
Abstract
This study assesses the efficacy of three white-rot fungi—Bjerkandera adusta, Phanerochaete chrysosporium, and Trametes versicolor—in degrading synthetic dyes and lignin in pulp and paper mill effluents, which annually contribute around 40,000 million cubic meters of dyed waste. Exploiting the [...] Read more.
This study assesses the efficacy of three white-rot fungi—Bjerkandera adusta, Phanerochaete chrysosporium, and Trametes versicolor—in degrading synthetic dyes and lignin in pulp and paper mill effluents, which annually contribute around 40,000 million cubic meters of dyed waste. Exploiting the structural resemblance of dyes to lignin, the fungi utilize ligninolytic enzymes—lignin peroxidase, manganese peroxidase, and laccase—to break down the pollutants. Initial mycoremediation trials in synthetic dye solutions with Direct black 80, Direct yellow 11, Basic brown 1, Orange II, and Red 8 BLP achieved decolorization rates of 70–80% within 7 days, except for Red 8 BLP. Both soluble and insoluble lignin fractions were significantly reduced, with an overall removal rate of 80–90%. Contrary to prior beliefs about the recalcitrance of azo dyes, B. adusta demonstrated substantial biodegradation capabilities, even on non-lignocellulosic substrates, such as dairy waste. The decolorization efficacy varied with dye structure, suggesting that efficiency should not be judged solely on color reduction. Remarkably, B. adusta also effectively decolorized and removed lignin from actual mill effluents without pH alteration, indicating a viable low-cost bioremediation strategy. This invites further investigation into optimizing B. adusta for industrial wastewater biodecolorization, especially in the field of PAHs (Polycyclic Aromatic Hydrocarbons) and EDCs (Endocrine Disrupting Chemicals). Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

13 pages, 8815 KiB  
Article
Fungal Ligninolytic Enzymes and Their Application in Biomass Lignin Pretreatment
by Anna Civzele, Alise Anna Stipniece-Jekimova and Linda Mezule
J. Fungi 2023, 9(7), 780; https://doi.org/10.3390/jof9070780 - 24 Jul 2023
Cited by 30 | Viewed by 3887
Abstract
Lignocellulosic biomass is a significant source of sustainable fuel and high-value chemical production. However, due to the complex cross-linked three-dimensional network structure, lignin is highly rigid to degradation. In natural environments, the degradation is performed by wood-rotting fungi. The process is slow, and [...] Read more.
Lignocellulosic biomass is a significant source of sustainable fuel and high-value chemical production. However, due to the complex cross-linked three-dimensional network structure, lignin is highly rigid to degradation. In natural environments, the degradation is performed by wood-rotting fungi. The process is slow, and thus, the use of lignin degradation by fungi has not been regarded as a feasible technology in the industrial lignocellulose treatment. Fungi produce a wide variety of ligninolytic enzymes that can be directly introduced in industrial processing of lignocellulose. Within this study, screening of ligninolytic enzyme production using decolorization of ABTS and Azure B dyes was performed for 10 fungal strains with potentially high enzyme production abilities. In addition to standard screening methods, media containing lignin and hay biomass as carbon sources were used to determine the change in enzyme production depending on the substrate. All selected fungi demonstrated the ability to adapt to a carbon source limitation; however, four strains indicated the ability to secrete ligninolytic enzymes in all experimental conditions—Irpex lacteus, Pleurotus dryinus, Bjerkandera adusta, and Trametes versicolor—respectively displayed a 100%, 82.7%, 82.7%, and 55% oxidation of ABTS on lignin-containing media and 100%, 87.9%, 78%, and 70% oxidation of ABTS on hay-containing media after 168 h of incubation. As a result, the most potent strains of fungi were selected to produce lignocellulose-degrading enzymes and to demonstrate their potential application in biological lignocellulose pretreatment. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

14 pages, 1493 KiB  
Article
Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930
by Kamila Rybczyńska-Tkaczyk
Biology 2022, 11(11), 1553; https://doi.org/10.3390/biology11111553 - 23 Oct 2022
Viewed by 2058
Abstract
The aim of this study was to evaluate the biodecolorization and detoxification of the anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture on medium [...] Read more.
The aim of this study was to evaluate the biodecolorization and detoxification of the anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture on medium with MTX (µg/mL) addition, immobilized with 4% sodium alginate. MTX removal degree (decolorization), levels of phenolic compounds and free radicals were determined during MTX biotransformation. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (multi-species microbial assay, MARA), and genotoxicity (SOS Chromotest) of MTX were evaluated before and after the biological treatment. The use of icVP/Ba (95 U/mL) significantly shortened the bioremoval of 10 µg/mL MTX (95.57% after 72 h). MTX removal by icVP/Ba was correlated with an 85% and 90% decrease in the levels of phenolic compounds and free radicals, respectively. In addition, the use of icVP/Ba contributed to a decrease in the phyto-, bio-, and genotoxicity of MTX. This is the first study to describe the possibility of removing MTX using immobilized crude fungal peroxidase. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

12 pages, 1102 KiB  
Article
PUF-Immobilized Bjerkandera adusta DSM 3375 as a Tool for Bioremediation of Creosote Oil Contaminated Soil
by Katarzyna Struszczyk-Świta, Piotr Drożdżyński, Karolina Murawska and Olga Marchut-Mikołajczyk
Int. J. Mol. Sci. 2022, 23(20), 12441; https://doi.org/10.3390/ijms232012441 - 18 Oct 2022
Cited by 5 | Viewed by 2576
Abstract
Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate [...] Read more.
Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate wood, which has a particularly negative impact on the condition of the soil in plants that impregnate wooden materials. Therefore, a rapid, effective, and eco-friendly technique for eliminating the creosote in this soil must be developed. The research focused on obtaining a preparation of Bjerkandera adusta DSM 3375 mycelium immobilized in polyurethane foam (PUF). It contained mold cells in the amount of 1.10 ± 0.09 g (DW)/g of the carrier. The obtained enzyme preparation was used in the bioremediation of soil contaminated with creosote (2% w/w). The results showed that applying the PUF-immobilized mycelium of B. adusta DSM 3375 over 5, 10, and 15 weeks of bioremediation, respectively, removed 19, 30, and 35% of creosote from the soil. After 15 weeks, a 73, 79, and 72% level of degradation of fluoranthene, pyrene, and fluorene, respectively, had occurred. The immobilized cells have the potential for large-scale study, since they can degrade creosote oil in soil. Full article
(This article belongs to the Special Issue Biodegradation of Pollutants in the Environment: Omics Approaches 2.0)
Show Figures

Figure 1

23 pages, 2811 KiB  
Article
The First Comprehensive Biodiversity Study of Culturable Fungal Communities Inhabiting Cryoconite Holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic)
by Justyna Borzęcka, Jakub Suchodolski, Bartłomiej Dudek, Lena Matyaszczyk, Klaudyna Spychała and Rafał Ogórek
Biology 2022, 11(8), 1224; https://doi.org/10.3390/biology11081224 - 16 Aug 2022
Cited by 9 | Viewed by 3877
Abstract
Cryoconite holes on glacier surfaces are a source of cold-adapted microorganisms, but little is known about their fungal inhabitants. Here, we provide the first report of distinctive fungal communities in cryoconite holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). Due to [...] Read more.
Cryoconite holes on glacier surfaces are a source of cold-adapted microorganisms, but little is known about their fungal inhabitants. Here, we provide the first report of distinctive fungal communities in cryoconite holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). Due to a combination of two incubation temperatures (7 °C and 24 ± 0.5 °C) and two media during isolation (PDA, YPG), as well as classical and molecular identification approaches, we were able to identify 23 different fungi (21 species and 2 unassigned species). Most of the fungi cultured from cryoconite sediment were ascomycetous filamentous micromycetes. However, four representatives of macromycetes were also identified (Bjerkandera adusta, Holwaya mucida, Orbiliaceae sp., and Trametes versicolor). Some of the described fungi possess biotechnological potential (Aspergillus pseudoglaucus, A. sydowii, Penicillium expansum, P. velutinum, B. adusta, and T. versicolor), thus, we propose the Arctic region as a source of new strains for industrial applications. In addition, two phytopathogenic representatives were present (P. sumatraense, Botrytis cinerea), as well as one potentially harmful to humans (Cladosporium cladosporioides). To the best of our knowledge, we are the first to report the occurrence of A. pseudoglaucus, C. allicinum, C. ramotenellum, P. sumatraense, P. velutinum, P. cumulodentataB. adusta, and T. versicolor in polar regions. In all likelihood, two unassigned fungus species (Orbiliaceae and Dothideomycetes spp.) might also be newly described in such environments. Additionally, due to experimenting with 10 sampling sites located at different latitudes, we were able to conclude that the number of fungal spores decreases as one moves down the glacier. Considering the prevalence and endangerment of glacial environments worldwide, such findings suggest their potential as reservoirs of fungal diversity, which should not be overlooked. Full article
(This article belongs to the Special Issue Polar Ecosystem: Response of Organisms to Changing Climate)
Show Figures

Figure 1

13 pages, 1516 KiB  
Article
A Bioactive Compounds Profile Present in the Selected Wood Rot
by Lidia Szwajkowska-Michałek, Kinga Stuper-Szablewska, Michał Krzyżaniak and Piotr Łakomy
Forests 2022, 13(8), 1242; https://doi.org/10.3390/f13081242 - 5 Aug 2022
Cited by 4 | Viewed by 2191
Abstract
Wood rot fungi are an essential link in the forest ecosystem. The presented study aimed to determine the content of selected antioxidant active compounds of selected saprobionts commonly found in the European forests: Hypholoma fasciculare (Huds.) P. Kumm, Bjerkandera adusta (Willd.) P. Karst., [...] Read more.
Wood rot fungi are an essential link in the forest ecosystem. The presented study aimed to determine the content of selected antioxidant active compounds of selected saprobionts commonly found in the European forests: Hypholoma fasciculare (Huds.) P. Kumm, Bjerkandera adusta (Willd.) P. Karst., Inonotus obliquus (Fr.) Pilát, Kuehneromyces mutabilis (Schaeff.) Singer & AH Sm., Trametes versicolor (L.) Lloyd, Pleurotusostreatus (Jacq.) P. Kumm., Pholiota squarrosa (Vahl) P. Kumm. Chemical methods (HPLC determination, ABTS+ and FPA methods, and a saponification method by Acquity UPLC) were used to analyze active compounds. In the tested isolates, the presence of 13 phenolic acids has been observed, including p-coumaric, ferulic, chlorogenic, and sinapic acid, in high concentrations. The antioxidant activity was from 2.5 to 3.5 times higher in the isolates of I. obliquus, P. ostreatus, and H. fasciculare in comparison to P. squarrosa and B. adusta. All isolates were tested for β-carotene, lutein, zeaxanthin, and astaxanthin. High concentrations of flavonoids were observed in H. fasciculare and P. squarrosa. In addition, the observed concentration of naringenin, quercetin, and kaempferol above 21 mg/kg DM was found. The ergosterol was quantified in the saprobiont fungi cultures. A diversified content of bioactive compounds characterized the tested fungi, and the Chaga (I. obliquus) reported the highest content of tested compounds. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 3183 KiB  
Article
Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (Hermetia illucens; Linnaeus, 1758) Larvae Reared on Palm Oil Side Streams
by Patrick Klüber, Dorothee Tegtmeier, Sabine Hurka, Janin Pfeiffer, Andreas Vilcinskas, Martin Rühl and Holger Zorn
Sustainability 2022, 14(9), 5626; https://doi.org/10.3390/su14095626 - 6 May 2022
Cited by 24 | Viewed by 5624
Abstract
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, [...] Read more.
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, and chitin. Here, we evaluated the suitability of two palm oil industry side streams—empty fruit bunches (EFB) and palm kernel meal (PKM)—as larval feed, and their impact on the larval gut microbiome. Among 69 fungal species we screened, Marasmius palmivorus, Irpex consors, and Bjerkandera adusta achieved the fastest growth and lignin degradation, so these fungi were used for the pretreatment of 7:3 mixtures of EFB and PKM. Larvae reared on the mixture pretreated with B. adusta (BAD) developed significantly more quickly and reached a higher final weight than those reared on the other pretreatments or the non-fermented reference (NFR). Amplicon sequencing of the BAD and NFR groups revealed major differences in the larval gut microbiome. The NFR group was dominated by facultatively anaerobic Enterobacteriaceae (typical of H. illucens larvae) whereas the BAD group favored obligately anaerobic, cellulolytic bacteria (Ruminococcaceae and Lachnospiraceae). We hypothesize that fungal lignin degradation led to an accumulation of mycelia and subsequent cellulolytic breakdown of fiber residues, thus improving substrate digestibility. Full article
(This article belongs to the Collection Sustainable Insect Farming: Feed the Future)
Show Figures

Figure 1

13 pages, 3280 KiB  
Article
Biological Synthesis of Monodisperse Uniform-Size Silver Nanoparticles (AgNPs) by Fungal Cell-Free Extracts at Elevated Temperature and pH
by Mariana Fuinhas Alves and Patrick G. Murray
J. Fungi 2022, 8(5), 439; https://doi.org/10.3390/jof8050439 - 23 Apr 2022
Cited by 24 | Viewed by 3939
Abstract
Fungi’s ability to convert organic materials into bioactive products offers environmentally friendly solutions for diverse industries. In the nanotechnology field, fungi metabolites have been explored for green nanoparticle synthesis. Silver nanoparticle (AgNP) research has grown rapidly over recent years mainly due to the [...] Read more.
Fungi’s ability to convert organic materials into bioactive products offers environmentally friendly solutions for diverse industries. In the nanotechnology field, fungi metabolites have been explored for green nanoparticle synthesis. Silver nanoparticle (AgNP) research has grown rapidly over recent years mainly due to the enhanced optical, antimicrobial and anticancer properties of AgNPs, which make them extremely useful in the biomedicine and biotechnology field. However, the biological synthesis mechanism is still not fully established. Therefore, this study aimed to evaluate the combined effect of time, temperature and pH variation in AgNP synthesis using three different fungi phyla (Ascomycota, Basidiomycota and Zygomycota) represented by six different fungi species: Cladophialophora bantiana (C. bantiana), Penicillium antarcticum (P. antarcticum), Trametes versicolor (T. versicolor), Trichoderma martiale (T. martiale), Umbelopsis isabellina (U. isabellina) and Bjerkandera adusta (B. adusta). Ultraviolet–visible (UV-Vis) spectrophotometry and transmission electron microscopy (TEM) results demonstrated the synthesis of AgNPs of different sizes (3 to 17 nm) and dispersity percentages (25 to 95%, within the same size range) using fungi extracts by changing physicochemical reaction parameters. It was observed that higher temperatures (90 °C) associated with basic pH (9 and 12) favoured the synthesis of monodisperse small AgNPs. Previous studies demonstrated enhanced antibacterial and anticancer properties correlated with smaller nanoparticle sizes. Therefore, the biologically synthesised AgNPs shown in this study have potential as sustainable substitutes for chemically made antibacterial and anticancer products. It was also shown that not all fungi species (B. adusta) secrete metabolites capable of reducing silver nitrate (AgNO3) precursors into AgNPs, demonstrating the importance of fungal screening studies. Full article
(This article belongs to the Special Issue Fungal Nanotechnology 2.0)
Show Figures

Figure 1

28 pages, 16027 KiB  
Article
Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930
by Kamila Rybczyńska-Tkaczyk
Molecules 2021, 26(22), 6842; https://doi.org/10.3390/molecules26226842 - 12 Nov 2021
Cited by 4 | Viewed by 2134
Abstract
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin–DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the [...] Read more.
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin–DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity. Full article
(This article belongs to the Special Issue Drugs in the Environment—Risks and Solutions)
Show Figures

Figure 1

16 pages, 2350 KiB  
Article
Removal of Aflatoxin B1 by Edible Mushroom-Forming Fungi and Its Mechanism
by Min-Jung Choo, Sung-Yong Hong, Soo-Hyun Chung and Ae-Son Om
Toxins 2021, 13(9), 668; https://doi.org/10.3390/toxins13090668 - 18 Sep 2021
Cited by 11 | Viewed by 4674
Abstract
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB [...] Read more.
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24–48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components. Full article
(This article belongs to the Special Issue Determination and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

11 pages, 1466 KiB  
Article
Functional Characterization of Melanin Decolorizing Extracellular Peroxidase of Bjerkandera adusta
by Jina Baik, Anwesha Purkayastha, Kyung Hye Park and Taek Jin Kang
J. Fungi 2021, 7(9), 762; https://doi.org/10.3390/jof7090762 - 15 Sep 2021
Cited by 7 | Viewed by 3751
Abstract
Melanin pigmentation in the human skin results from complicated cellular mechanisms that remain to be entirely understood. Uneven melanin pigmentation has been counteracted by inhibiting synthesis or transfer of melanin in the skin. Recently, an enzymatic approach has been proposed, wherein the melanin [...] Read more.
Melanin pigmentation in the human skin results from complicated cellular mechanisms that remain to be entirely understood. Uneven melanin pigmentation has been counteracted by inhibiting synthesis or transfer of melanin in the skin. Recently, an enzymatic approach has been proposed, wherein the melanin in the skin is decolorized using lignin peroxidase. However, not many enzymes are available for decolorizing melanin; the most studied one is lignin peroxidase derived from a lignin degrading fungus, Phanerochaete chrysosporium. Our current study reveals that versatile peroxidase from Bjerkandera adusta can decolorize synthetic melanin. Melanin decolorization was found to be dependent on veratryl alcohol and hydrogen peroxide, but not on Mn2+. The degree of decolorization reached over 40% in 10 min at 37 °C and a pH of 4.5. Optimized storage conditions were slightly different from those for the reaction; crude enzyme preparation was the most stable at 25 °C at pH 5.5. Since the enzyme rapidly lost its activity at 50 °C, stabilizers were screened. As a result, glycerol, a major component in several cosmetic formulations, was found to be a promising excipient. Our results suggest that B. adusta versatile peroxidase can be considered for future cosmetic applications aimed at melanin decolorization. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

17 pages, 4493 KiB  
Article
Enhanced Lignocellulolytic Enzyme Activities on Hardwood and Softwood during Interspecific Interactions of White- and Brown-Rot Fungi
by Junko Sugano, Ndegwa Maina, Janne Wallenius and Kristiina Hildén
J. Fungi 2021, 7(4), 265; https://doi.org/10.3390/jof7040265 - 31 Mar 2021
Cited by 17 | Viewed by 4077
Abstract
Wood decomposition is a sophisticated process where various biocatalysts act simultaneously and synergistically on biopolymers to efficiently break down plant cell walls. In nature, this process depends on the activities of the wood-inhabiting fungal communities that co-exist and interact during wood decay. Wood-decaying [...] Read more.
Wood decomposition is a sophisticated process where various biocatalysts act simultaneously and synergistically on biopolymers to efficiently break down plant cell walls. In nature, this process depends on the activities of the wood-inhabiting fungal communities that co-exist and interact during wood decay. Wood-decaying fungal species have traditionally been classified as white-rot and brown-rot fungi, which differ in their decay mechanism and enzyme repertoire. To mimic the species interaction during wood decomposition, we have cultivated the white-rot fungus, Bjerkandera adusta, and two brown-rot fungi, Gloeophyllum sepiarium and Antrodia sinuosa, in single and co-cultivations on softwood and hardwood. We compared their extracellular hydrolytic carbohydrate-active and oxidative lignin-degrading enzyme activities and production profiles. The interaction of white-rot and brown-rot species showed enhanced (hemi)cellulase activities on birch and spruce-supplemented cultivations. Based on the enzyme activity profiles, the combination of B. adusta and G. sepiarium facilitated birch wood degradation, whereas B. adusta and A. sinuosa is a promising combination for efficient degradation of spruce wood, showing synergy in β-glucosidase (BGL) and α-galactosidase (AGL) activity. Synergistic BGL and AGL activity was also detected on birch during the interaction of brown-rot species. Our findings indicate that fungal interaction on different woody substrates have an impact on both simultaneous and sequential biocatalytic activities. Full article
(This article belongs to the Special Issue Fungal Enzymes 2021)
Show Figures

Figure 1

20 pages, 2793 KiB  
Article
Possibility to Biotransform Anthracyclines by Peroxidases Produced by Bjerkandera adusta CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity
by Kamila Rybczyńska-Tkaczyk, Teresa Korniłłowicz-Kowalska and Konrad A. Szychowski
Molecules 2021, 26(2), 462; https://doi.org/10.3390/molecules26020462 - 17 Jan 2021
Cited by 10 | Viewed by 2723
Abstract
The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin [...] Read more.
The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity. Full article
(This article belongs to the Special Issue Drugs in the Environment—Risks and Solutions)
Show Figures

Graphical abstract

12 pages, 1687 KiB  
Article
Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules
by Katerina Georgousaki, Nikolaos Tsafantakis, Sentiljana Gumeni, George Lambrinidis, Victor González-Menéndez, Jose R. Tormo, Olga Genilloud, Ioannis P. Trougakos and Nikolas Fokialakis
Molecules 2020, 25(3), 666; https://doi.org/10.3390/molecules25030666 - 4 Feb 2020
Cited by 16 | Viewed by 4835
Abstract
A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and [...] Read more.
A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents. Full article
(This article belongs to the Special Issue Analytical Microbiology)
Show Figures

Graphical abstract

Back to TopTop