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Abstract: Wood rot fungi are an essential link in the forest ecosystem. The presented study aimed
to determine the content of selected antioxidant active compounds of selected saprobionts com-
monly found in the European forests: Hypholoma fasciculare (Huds.) P. Kumm, Bjerkandera adusta
(Willd.) P. Karst., Inonotus obliquus (Fr.) Pilát, Kuehneromyces mutabilis (Schaeff.) Singer & AH Sm.,
Trametes versicolor (L.) Lloyd, Pleurotus ostreatus (Jacq.) P. Kumm., Pholiota squarrosa (Vahl) P. Kumm.
Chemical methods (HPLC determination, ABTS+ and FPA methods, and a saponification method
by Acquity UPLC) were used to analyze active compounds. In the tested isolates, the presence of
13 phenolic acids has been observed, including p-coumaric, ferulic, chlorogenic, and sinapic acid,
in high concentrations. The antioxidant activity was from 2.5 to 3.5 times higher in the isolates of
I. obliquus, P. ostreatus, and H. fasciculare in comparison to P. squarrosa and B. adusta. All isolates were
tested for β-carotene, lutein, zeaxanthin, and astaxanthin. High concentrations of flavonoids were
observed in H. fasciculare and P. squarrosa. In addition, the observed concentration of naringenin,
quercetin, and kaempferol above 21 mg/kg DM was found. The ergosterol was quantified in the
saprobiont fungi cultures. A diversified content of bioactive compounds characterized the tested
fungi, and the Chaga (I. obliquus) reported the highest content of tested compounds.

Keywords: wood rot; Hypholoma fasciculare; Bjerkandera adusta; Inonotus obliquus; Kuehneromyces
mutabilis; Trametes versicolor; Pleurotus ostreatus; Pholiota squarrosa

1. Introduction

Wood decay fungi are crucial links in the ecosystems of forests. As saprobionts, they
decompose dead organic matter and release elements into circulation in nature. They
are the main group of organisms—and often the only ones—capable of decomposing the
high-molecular components of wood (cellulose, hemicellulose, lignin), which are the most
complex and slowest natural substances to deteriorate in nature [1]. As a result of their
decomposition, humus is formed. The direct way the soil humic compounds form is
their synthesis from fragments, such as polyphenols, with the involvement of organically
originated nitrogen. The polyphenol source may be the lignin decomposition processes and
the transformation of the carbohydrates; many polyphenols are formed as the metabolites
of various microorganisms [2].

The fungi lead to the polyphenols’ oxidation and the formation of the chinoid com-
pound in subsequent stages. The aforementioned processes are observed in various fungi
biological systems, indicating interesting studies using the saprotrophs fungi mycelium as
an alternative source of polyphenols and other bioactive compounds [3–5].

Common edible wood-decay fungi include Kuehneromyces mutabilis (Schaeff.) Singer &
A.H. Sm. and P. ostreatus (Jacq.) P. Kumm. Kuehneromyces mutabilis grows in large numbers
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in deciduous and mixed forests [6,7]; Pleurotus ostreatus is a fungus found in the wood of the
deciduous species [8,9]. As edible mushrooms, they provide easily digestible protein, folic
acid, vitamins (thiamin, riboflavin, and niacin) [7,10–13], minerals (potassium, magnesium,
copper, calcium, phosphorus, iron, selenium) [14,15], and substances that lower blood
cholesterol level (lovastatin) [16]. In addition, antioxidant, antidiabetic, antimicrobial,
immunostimulating, and antitumor substances have been detected in the fruiting bodies of
P. ostreatus [17,18].

Poisonous fungi commonly found in the forest environment include H. fasciculare
(Huds.) P. Kumm. [19]. A compound with an antibiotic effect against Staphylococcus aureus
was isolated from its fruiting bodies. The antagonistic activity of H. fasciculare against
other soil fungi and antibacterial activity were also found in the case of Paraphaeosphaeria
minitans (W.A. Campb.) Verkley, Göker & Stielow [20], Penicillium citrinum Thom [21], and
Pleurotus tuber-regium (Fr.) Singer [21–27]. Another common saprobiont throughout Europe
is T. versicolor (L.) Lloyd. The fruiting bodies can be found on the trunks or branches of
dead shrubs and angiosperm and gymnosperm tree [28], which cause white rot in the
wood [29]. In Europe, it is considered an inedible mushroom [19]; however, the mushrooms
list prepared for the F.A.O. listed the mushroom as edible in China, Hong Kong, Laos,
and Mexico [30]. Mycological and chemical research has proven the presence of many
compound groups in T. versicolor fruiting bodies, which are responsible for many thera-
peutic effects, including polysaccharides, protein-polysaccharide complexes, polyphenolic
compounds, and terpenes [31,32].

Another mushroom with healing properties is I. obliquus (Fr.) Pilát, which also causes
white rot in wood. In Poland, I. obliquus occurs infrequently, and it is mainly found on birch
and rarely on other deciduous trees; therefore, it is under partial species protection [6].
In Poland, the mushroom is considered inedible, while according to the F.A.O. list, it is
an edible mushroom in Canada and Russia (Journal of Laws No. of 2014, item 1408) [33].
I. obliquus sclerotia (black, cracked, lumpy formations) from birch trunks are used for
medicinal purposes. The results of contemporary studies of the metabolites isolated from
I. obliquus sclerotia [34] indicate their broad biological activity and potential properties,
including hypoglycemic [35], antiviral [36,37], antimutagenic [38], anticancer, and cytostatic
characteristics [35,39–46], as well as strong antioxidative properties [45,47–51]. Common
white rot fungi are: B. adusta (Willd.) P. Karst. and P. squarrosa (Vahl) P. Kumm.

The presented study aimed to determine the content of selected antioxidant active
compounds (phenolic acids, flavonoids, carotenoids) of selected fungi (saprobionts) com-
monly found in the European forests: H. fasciculare, B. adusta., I. obliquus, K. mutabilis.,
T. versicolor, P. ostreatus., and P. squarrosa. The antioxidant activity measured by the ABTS
radical and the free phenolic acids (FPA) content was also tested. In addition, the content
of ergosterol, the main component of the fungal cell membrane, was determined.

2. Materials and Methods
2.1. Fungal Isolates

The saprobiont fungi came from the Department of Forest Entomology and Pathology
collection at the Poznań University of Life Sciences (Table 1).

2.2. The Extracts Preparation

Samples of 5 g the fungal mycelia from each wood decay fungus were collected for
analyses of phenolic acids. The samples of all species were homogenized. Total phenolic
acids were extracted with 80% MeOH (Sigma-Aldrich, Inc., St. Louis, MO, USA). After
flooding with 100 mL MeOH, samples were placed in an ultrasound bath for 30 min in
special flasks, and subsequently, the precipitate was collected in distillation flasks. The
extraction process was repeated three times. Next, the combined extracts were evaporated
to dryness in an evaporator (Laboratory Evaporators Cole-Parmer Rotary, Vernon Hills, IL,
USA). Finally, phenolic acids were transferred quantitatively to a vial using MeOH and
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dried in a stream of nitrogen. An automated N1 system was used, which specializes in the
rapid concentration of samples by PERLAN Technologies.

Table 1. Fungal isolates.

No Species Isolate No. Isolate Code

1. Sulfur tuft (Hypholoma fasciculare) 96,032 Hf
2. Smoky polypore (Bjerkandera adusta) 322 Ba
3. Chaga (Inonotus obliquus) 110,421.3 Io
4. Sheathed woodtuft (Kuehneromyces mutabilis) 96,040 Km
5. Turkey tail (Trametes versicolor) 230,318 Tv
6. Oyster mushroom (Pleurotus ostreatus) 20,080 Po
7. Shaggy scalycap (Pholiota squarrosa) 206,021 Ps

2.3. Chemical Analyzes
2.3.1. Determination of the Phenolic Compounds
Alkaline Hydrolysis

For analysis, the extracts were redissolved in 1 mL 80% MeOH. Next, they were placed
in sealed 17 mL culture test tubes, where first alkaline and then acid hydrolyses were
run. 1 mL distilled water and 4 mL 2 M aqueous sodium hydroxide (Sigma-Aldrich, Inc.,
St. Louis, MO, USA) were added to the test tubes to run alkaline hydrolysis. Tightly
sealed test tubes were heated in a water bath at 95 ◦C for 30 min. After cooling (approx.
20 min), the test tubes were neutralized with 2 mL 6 M aqueous hydrochloric acid solution
(Sigma-Aldrich, Inc., St. Louis, MO, USA) (pH = 2). Next, samples were cooled in water
with ice. The flavonoids were extracted from the organic phase using diethyl ether (Sigma-
Aldrich, Inc., St. Louis, MO, USA) (2 × 2 mL). The formed ether extracts were continuously
transferred to 8 mL vials.

Acid Hydrolysis

Next, acid hydrolysis was run. For this purpose, the aqueous phase was supplemented
with 3 mL 6 M aqueous hydrochloric acid solution. The tightly sealed test tubes were
heated in a water bath at 95 ◦C for 30 min. After being cooled in water with ice, the samples
were extracted with diethyl ether (2 × 2 mL for approx. 5 min). The produced ether extracts
were continuously transferred to 8 mL vials, after which they were evaporated to dryness
in a stream of nitrogen. An automated N1 system was used, which specializes in the
rapid concentration of samples by PERLAN Technologies. Next, samples were dissolved
in 1 mL methanol (Sigma-Aldrich, Inc., St. Louis, MO, USA). A phenolic compound
analysis was performed using an Acquity H class UPLC system equipped with an Acquity
P.D.A. detector (the ACQUITY UPLC Photodiode Array (P.D.A.) Detector) (Waters Corp,
Milford, MA, USA). Chromatographic separation was performed on an Acquity UPLC®

BEH C18 column (100 mm × 2.1 mm, particle size—1.7 µm) (Waters, Dublin, Ireland).
The concentrations of phenolic compounds were determined using an internal standard at
wavelengths of λ = 280 nm (phenolic acids), whereas the wavelength of flavonoids was
λ = 320 nm, and finally expressed as mg/100 g DW of samples. The compounds were
identified by comparing the analyzed peak retention time with the standard (Sigma-Aldrich,
Inc., St. Louis, MO, USA) retention time, which added a specific standard to the analyzed
samples, and repeating the analysis. The detection level was 1 µg/g [52].

2.3.2. Determination of the Free Phenolic Acids (FPA) and Antioxidant Activity
(ABTS Method)

The free phenolic acids analysis was determined as described by Przybylska-Balcerek
et al. [53].

For the ABTS generation from ABTS salt, 3 mM of K2S2O8 (Sigma-Aldrich, Inc., St.
Louis, MO, USA) was reacted with 8 mM ABTS salt in distilled, deionized water for 16 h
at room temperature in the dark. The ABTS solution was then diluted with a pH 7.4
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phosphate buffer solution containing 150 mM NaCl (PBS) (Sigma-Aldrich, Inc., St. Louis,
MO, USA) to obtain an initial absorbance of 1.5 at 730 nm. The fresh ABTS solution was
prepared for each analysis. The kinetic reaction was determined over a 2 h period with
readings every 15 min; the reactions were complete in 30 min. The samples and standards
(100 µL) were reacted with the ABTS solution (2900 µL) for 30 min.

Trolox was used as a standard. The results were expressed in the ABTS (µmolTROLOX/g
DM) sample [52].

2.3.3. Determination of the Carotenoids

Carotenoid isolation and quantification were performed in the fungi samples by
the saponification method by an Acquity UPLC (Waters, Milford, MA, USA). First, the
carotenoid extracts were obtained from the mycelia (0.4 mg) combined with an acetone
and petroleum ether (1:1) mixture. Then, after separating the mycelia, the acetone and the
hydrophilic fraction were removed from the extract by washing with water; as a result, the
ether extract was obtained with a mixture of carotenoid pigments. The extract prepared
was concentrated in a vacuum evaporator at 35 ◦C until an oily residue was obtained, then
digested in 2 mL of methanol (Merck) and subjected to chromatographic analysis. The
total carotenoids were determined using an Acquity UPLC (Waters, Milford, MA, USA)
with a Waters Acquity P.D.A. detector (Waters, Milford, MA, USA). The chromatographic
separation was performed on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm,
particle size 1.7 µm) (Waters, Dublin, Ireland). The column and samples were thermostated,
the column temperature was 30 ◦C, and the test temperature was 10 ◦C. During the
analysis, the solutions were degassed in a Waters device. The injection volume was 10 µL.
The registration was carried out at a wavelength λ = 445 nm [54]. The compounds were
identified by comparing the analyzed peak retention time with the standard (Sigma-Aldrich,
Inc., St. Louis, MO, USA) retention time, adding a specific standard to the analyzed samples,
and repeating the analysis.

2.3.4. Determination of the Ergosterol (ERG)

The ergosterol was determined by UPLC as described by Perkowski et al. [55] with
some modifications. The samples (mycelia) were analyzed by an Acquity H class UPLC
system equipped with a Waters Acquity P.D.A. detector (Waters, Milford, MA, USA).
The chromatographic separation was performed on an Acquity UPLC® BEH C18 col-
umn (100 mm × 2.1 mm, particle size 1.7 µm) (Waters, Dublin, Ireland) and eluted with
methanol/acetonitrile/water (85:10:5) at a 0.4 mL/min flow rate. The ergosterol was de-
tected with a Waters Acquity P.D.A. detector (Waters, Milford, MA, USA) set at 282 nm.
Ergosterol was identified by comparing the analyzed peak retention time with the standard
(Sigma-Aldrich, Inc., St. Louis, MO, USA) retention time, adding a specific standard to the
analyzed samples, and repeating the analysis.

2.4. Statistical Analysis

The chemical analyses were analyzed statistically using the STATISTICA v.8.0 software
(Tibco software Inc., Palo Alto, CA, USA). Tukey’s multiple comparison procedure was used
to compare the contents of individual metabolites: phenolic acids, flavonoids, carotenoids,
antioxidant activity, and ergosterol content in the fungal isolates. The identical letters in
rows or columns denote the lack of differences at a significance level of α = 0.05.

3. Results
3.1. Concentration of Phenolic Compounds

The highest sum of phenolic acid content was found in I. obliquus (Io) (435.52 mg/kg
DM) and the lowest in P. squarrosa (Ps) (Table 2 and Figure 1). Among the analyzed acids,
chlorogenic and sinapic acids were found in the highest concentrations in B. adusta (Ba) and
P. ostreatus (Po), respectively. Conversely, pyroglutamic and pyruvic acids were present in
low concentrations in all tested samples. Ferulic and coumaric acid in the three studied
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fungi (H. fasciculare (Hf), I. obliquus (Io), and K. mutabilis (Km) were present at a level above
84 mg/kg DM.

Table 2. The phenolic acids concentration of 7 fungal isolates (mg/kg DM in mycelium).

Phenolic Acids Hf Ps Ba Io Po Tv Km

Protocatechuic 1.21a 0.12c 0.5b 1.08a 0.95a 0.5b 1.69a
Pyroglutaminic 0.27ab 0.09b nd 0.77a nd nd 0.45a

Pyruvic 1.34c 0.12d nd 7.2b nd 10.95a 6.56b
Gallic 26.57a 9.55b 9.82b 32.13a 8.43b 9.77b 28.73a

2.5-dihydroxybenzoic 9.46a 2.07b 3.0b 9.76a 2.8b 2.9b 8.98a
4-hydroxybenzoic 11.22a 1.45b 2.0b 9.45a 1.71b 1.78b 12.69a

Caffeic 31.73a 3.31b 0.01c 31.62a 0.02c 0.01c 32.58a
Syryngic 28.84a 2.92b 0.09c 30.64a 0.08c 0.06c 29.82a

p-coumaric 92.75a 6.12b 6.92b 84.12a 6.45b 6.27b 94.79a
Ferulic 87.87a 10.7b 10.39b 98.43a 9.95b 9.14b 98.38a

Chlorogenic 18.63b 6.56c 108.49a 27.91b 9.55c 9.13c 19.83b
Sinapic 53.01b 1.24c 0.14c 51.56b 100.72a 0.12c 56.31b

t-cinnamic 43.07a 2.16b 2.16b 50.85a 1.16b 1.98b 41.5a
Sum of an identified

phenolic acids 405.97a 46.41c 143.52b 435.52a 141.82b 52.61c 432.31a

nd—not detected. a,b,c—the same letters in the columns indicate lines of significant differences at the significance
level α = 0.05.
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The research on the content of the selected flavonoids showed that the highest contents
of these metabolites were observed in I. obliquus (Io)—114.5 mg/kg DM (sum of flavonoids),
and the lowest in B. adusta (Ba)—0.07 mg/kg DM (sum of flavonoids) (Table 3 and Figure 2).
High concentrations were also observed in H. fasciculare (Hf) and K. mutabilis (Km) (sum
of flavonoids). In addition, high concentrations of naringenin, quercetin, and kaempferol
(above 21 mg/kg DM) were found. Conversely, B. adusta (Ba) was characterized by the
lowest concentration of flavonoids (0.07 mg/kg DM). P. squarrosa (Ps) and T. versicolor (Tv)
were also poor in flavonoids.

3.2. Antioxidant Activities of Mushroom Isolate Extracts

The ABTS+ radical neutralizing activity was measured for the methanol-water extracts
obtained from the seven fungal mycelium isolates. Among the tested fungi, T. versicolor (Tv)
was characterized by the highest antioxidant activity with a TEAC value of 908.56 µM/g
and the highest concentration of FPA (195.52 mg GAE/g DM). Conversely, H. fasciculare
(Hf) and B. adusta (Ba) had a radical scavenging capacity of 2 and 9 times lower, respectively,
compared to T. versicolor (Tv). The mean values of the antioxidant activity were shown by
the isolates of K. mutabilis (Km), P. ostreatus (Po), and I. obliquus (Io) (TEAC from 534.27
to 351.41 µM/g). The lowest antioxidant activity was observed in P. squarrosa (Ps). The
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lowest concentration of FPA was found for the B. adusta (Ba) isolate (102.97 mg GAE/g
DM) (Table 4).

Table 3. The flavonoids concentration of 7 fungal isolates (mg/kg DM in mycelium).

Isolate Code Flavonoids

Naringenin Vitexin Rutin Quercetin Apigenin Kaempferol

Hf 25.66a 5.84a 16.72a 22.99b 16.35a 20.88a
Ps 0.32c nd nd nd nd nd
Ba 0.07c nd nd nd nd nd
Io 27.11a 5.18a 19.05a 24.03ab 17.92a 21.21a
Po 0.14c nd nd 0.33c 6.99b nd
Tv 0.18c 0.03b nd nd nd nd
Km 16.82b 6.62a 19.02a 27.50a 19.57a 24.63a

nd—not detected, a,b,c—the same letters in the columns indicate lines of significant differences at the significance
level α = 0.05.
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Table 4. The antioxidant activities of methanol-water extracts of the obtained mushroom isolates
measured by reaction with the radical ABTS cation and the free phenolic acids (FPA) content.

Isolate Code FPA (mg GAE/g DM) ABTS (TEAC) µM Trolox/g

Hf 147.10b 467.87b
Ps 162.21c 104.20a
Ba 102.97a 108.28a
Io 188.99d 351.41b
Po 104.81a 417.71b
Tv 195.52d 908.56c
Km 171.62c 534.27b

a,b,c—the same letters in the columns indicate lines of significant differences at the significance level α = 0.05.

3.3. Concentration of Carotenoids

The highest carotenoid content was found in T. versicolor (Tv) and the lowest in
P. squarrosa (Ps). In all tested isolates, β-carotene was present in the highest concentration.
Similarly, zeaxanthin was found in the trace amounts in H. fasciculare (Hf), P. squarrosa (Ps),
and K. mutabilis (Km) (Table 5 and Figure 3).

3.4. Concentration of Ergosterol

The ergosterol (ERG) was quantified in the saprobiont fungi cultures. The highest
ERG content was found in I. obliquus (Io) (863.33 mg/kg) and the lowest in T. versicolor (Tv)
(223.30 mg/kg). The high concentration of this metabolite was also observed in H. fasciculare
(Hf). The ERG content in the remaining isolates was above 300 mg/kg (Table 6).
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Table 5. The carotenoids concentration (mg/kg) in 7 fungal isolates.

Isolate Code Lutein Zeaxanthin β-Carotene Astaxanthin Sum of Identified
Carotenoids

Hf 0.15a 0.05a 0.37a 0.10a 0.90a
Ps 0.11a 0.04a 0.19a 0.05a 0.65a
Ba 0.11a 0.08a 0.30a 0.10a 0.99a
Io 0.31b 0.24b 0.51ab 0.21ab 1.65b
Po 0.57b 0.37b 0.70b 0.21ab 1.99b
Tv 0.70c 0.21b 0.99b 0.37b 2.66c
Km 0.03a 0.07a 0.26a 0.10a 0.46a

a,b,c—the same letters in the columns indicate lines of significant differences at the significance level α = 0.05.

Forests 2022, 13, x FOR PEER REVIEW 7 of 14 
 

 

908.56 μM/g and the highest concentration of FPA (195.52 mg GAE/g DM). Conversely, 
H. fasciculare (Hf) and B. adusta (Ba) had a radical scavenging capacity of 2 and 9 times 
lower, respectively, compared to T. versicolor (Tv). The mean values of the antioxidant 
activity were shown by the isolates of K. mutabilis (Km), P. ostreatus (Po), and I. obliquus 
(Io) (TEAC from 534.27 to 351.41 μM/g). The lowest antioxidant activity was observed in 
P. squarrosa (Ps). The lowest concentration of FPA was found for the B. adusta (Ba) isolate 
(102.97 mg GAE/g DM) (Table 4). 

Table 4. The antioxidant activities of methanol-water extracts of the obtained mushroom isolates 
measured by reaction with the radical ABTS cation and the free phenolic acids (FPA) content. 

Isolate Code FPA (mg GAE/g DM) ABTS (TEAC) μM Trolox/g 
Hf  147.10b 467.87b 
Ps 162.21c 104.20a 
Ba  102.97a 108.28a 
Io  188.99d 351.41b 
Po  104.81a 417.71b 
Tv  195.52d 908.56c 
Km  171.62c 534.27b 

a,b,c—the same letters in the columns indicate lines of significant differences at the significance 
level α = 0.05. 

3.3. Concentration of Carotenoids 
The highest carotenoid content was found in T. versicolor (Tv) and the lowest in P. 

squarrosa (Ps). In all tested isolates, β-carotene was present in the highest concentration. 
Similarly, zeaxanthin was found in the trace amounts in H. fasciculare (Hf), P. squarrosa 
(Ps), and K. mutabilis (Km) (Table 5 and Figure 3). 

 
Figure 3. Comparison of carotenoids (1-lutein, 2-zeaxanthin, 3-β-carotene, 4-astaxanthin) UPLC 
chromatograms: Io (green line), Po (black line), Ba (blue line). 

Table 5. The carotenoids concentration (mg/kg) in 7 fungal isolates. 

Isolate Code Lutein Zeaxanthin β-Carotene Astaxanthin Sum of Identified Carotenoids 
Hf 0.15a 0.05a 0.37a 0.10a 0.90a 
Ps 0.11a 0.04a 0.19a 0.05a 0.65a 
Ba 0.11a 0.08a 0.30a 0.10a 0.99a 
Io 0.31b 0.24b 0.51ab 0.21ab 1.65b 
Po 0.57b 0.37b 0.70b 0.21ab 1.99b 
Tv 0.70c 0.21b 0.99b 0.37b 2.66c 
Km 0.03a 0.07a 0.26a 0.10a 0.46a 

a,b,c—the same letters in the columns indicate lines of significant differences at the significance 
level α = 0.05. 

Figure 3. Comparison of carotenoids (1-lutein, 2-zeaxanthin, 3-β-carotene, 4-astaxanthin) UPLC
chromatograms: Io (green line), Po (black line), Ba (blue line).

Table 6. The ergosterol (ERG) concentration (mg/kg) in 7 fungal isolates.

Isolate Code Ergosterol

Hf 772.50c
Ps 300.63a
Ba 317.92a
Io 863.33c
Po 342.18a
Tv 223.30a
KM 610.89b

a,b,c—the same letters in the columns indicate lines of significant differences at the significance level α = 0.0.

4. Discussion

The studied saprobiont fungi occurring in the various Polish forest habitats were
characterized by a diversified content of the biologically active compounds. The first group
of compounds analyzed in this study was phenolic acids, which included p-coumaric,
ferulic, chlorogenic, and sinapic acids as the major components. Gallic, p-hydroxybenzoic,
protocatechuic, vanillic, syringic, caffeic, ferulic, p-coumaric, and sinapic acids are the
most common acids in the plant world [56]. In the tested isolates, the presence of 13 acids
was observed, including the highest concentrations of p-coumaric, ferulic, chlorogenic,
and sinapic acid. The greatest antioxidant capacity (protection of cells against hydrogen
peroxide) is shown by the following acids: vanillic and caffeic acid [57]. The latter was
present in all tested isolates, and the highest concentration was observed in H. fasciculare
(Hf), I. obliquus (Io), and K. mutabilis (Km). The other acids determined in the isolates tested,
which were characterized by in vitro and in vivo antioxidant, antibacterial, antiviral, and
antifungal properties, are p-hydroxybenzoic, gallic, and protocatechuic acid [58].

A rich profile of phenolic acids in I. obliquus was presented in this study (Table 2)
Numerous reports on the presence of phenolic acids in I. obliquus (Io) confirmed the presence
of the following acids: gallic, protocatechuic, and p-hydroxybenzoic acid [34,50,59–61]. Ju
et al. [62] isolated vanillic, protocatechuic, and 2.5-dihydroxyterephthalic acids.
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Similar results were obtained by Janjušević et al. [63], who identified ten phenolic
acids in T. versicolor (Tv) harvested in northwest Romania, six of which were confirmed
in this study, among others: quinic, malic, vanillic, and caffeic acid. Other researchers
found that the methanol extract of T. versicolor fruiting bodies showed the presence of three
free phenolic acids: gallic (73 µg/g DM), protocatechuic (48 µg/g DM), and caffeic acid
(154 µg/g DM) [58].

In the conducted analyses, six phenolic acids were determined in P. ostreatus (Table 1).
Sinapic acid was present in a high concentration (100.72 mg/kg DM) with 141.82 mg/kg
DM total acids content. Muszyńska et al. [64] found the presence of five acids in P. ostreatus:
protocatechuic, p-hydroxybenzoic, p-coumaric, sinapic, vanillic, ferulic (1.28–21.38 mg/kg
DM), and cinnamic acid (from 1.09 to 8.73 mg/kg DM). Similar results were obtained by
Gąsecka et al. [65], but they did not measure sinapic acid. However, Kim et al. [66] noted a
higher concentration of chlorogenic acids in the methanol extract of P. ostreatus. The study
also quantified two other HBA derivatives and protocatechuic acids.

Badalyan et al. [67] determined the following acids in P. squarrosa and P. ostreatus:
4-hydroxybenzoic, 4-hydroxycinnamic, 4-hydroxy-3-methoxybenzoic, and 3,4-dihydroxy-
phenylacetic. Woldegiorgis et al. [68] also confirmed the presence of caffeic, gallic, and
p-hydroxybenzoic acids in the methanolic extract of P. ostreatus cultivated in Ethiopia and
determined that caffeic acid had the highest concentration among the phenolic acids. A
different result was obtained by Palacious et al. [69], who found a low level of caffeic acid in
P. ostreatus. Barros et al. [70] isolated the following acids from H. fasciculare: protocatechuic,
p-hydroxybenzoic, and p-coumaric acids. In our research, we also quantified thirteen
phenolic acids, and the highest concentration was observed for p-coumaric acid.

The carotenoids were another compound detected from the tested fungi. They belong
to the group of chemicals that are synthesized in the organisms of bacteria, fungi, algae,
and plants. Carotenoids containing 4-keto groups, monocyclic, and 13 double bonds in
the structure, are characteristic of fungi [71,72]. The conjugated bonds are responsible for
the distinctive color of these compounds (yellow, orange, or purple). These compounds
protect against oxidative stress and exposure to visible light or UV radiation [73]. Moreover,
carotenoids are intermediates in the biosynthesis of physiologically active apocarotenoids
and their derivatives [74]. A large amount of reactive, conjugated double bonds present in
the carotenoids causes the high activity of these compounds as antioxidants active against
free radicals. These compounds stabilize cell membranes and act as photoreceptors.

All isolates were tested for β-carotene, lutein, zeaxanthin, and astaxanthin. The latter
metabolite is characterized by 10-fold higher antioxidant activity than the other carotenoids:
β-carotene, zeaxanthin, and lutein [75,76]. In our research, the highest concentration of this
metabolite was observed in the T. versicolor (Tv) isolate. Other researchers confirmed the
presence of β-carotene in P. ostreatus [77]. Jayakumar et al. [78] determined β-carotene in
a 5-fold higher concentration than the present study. Robaszkiewicz et al. [79], Jaworska
et al. [80], and Turfan et al. [81] found lycopene presence in addition to β-carotene. The latter
was present at a much lower concentration in P. ostreatus. Mushroom species that contain
β-carotene are Cantharellus cibarius Fr., Agaricus bisporus (J.E. Lange) Imbach, Boletus edulis
Bull., Suillus bovinus (L.) Roussel, and Tricholoma equestre (L.) P. Kumm. Lycopene was
found in the fruiting bodies of C. cibarius, A. bisporus, B. edulis, S. bovinus, and T. equestre.
Lutein, α-carotene, and xanthotoxin were found in the fruiting bodies of C. cibarius, while
γ-carotene, auroxanthin, and neurosporin was found in B. edulis. Barros et al. [82,83]
spectrophotometrically proved that among the six Basidiomycota (Whittaker ex R.T. Moore)
species collected in northeast Portugal, C. cibarius contains the highest amount of β-carotene,
which was equal to 13.56 mg/g DM. For the other species, the content of this metabolite
ranged from 1.95–12.77 mg/g DM [82,83].

Another group of active compounds isolated from the analyzed fungi is flavonoids.
Today, more than 9000 different flavonoids are known, and the number continues to
grow [84]. Flavonoids are polyphenolic chemical compounds of plant-based origins on
the flavone skeleton. Their name comes from the Latin word flavus, meaning yellow.
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They occur mainly in the form of glycosides in the higher plants’ tissues and fungi. The
antioxidant activity of the flavonoids depends on the conjugated double bonds in the C-2
and C-3 position, hydroxyl groups, and the carboxyl group in the C-4 position [85,86].
In the conducted analyses, the highest content of these metabolites was observed in I.
obliquus (Io)—114.5 mg/kg DM. High concentrations were also observed in H. fasciculare
(Hf) and P. squarrosa (Ps). In addition, a high concentration of naringenin, quercetin, and
kaempferol above 21 mg/kg DM was found. Similar results were obtained by Zheng
et al. [34], who also isolated quercetins, naringenins, and kaempferol from I. obliquus (Io).
Conversely, B. adusta (Ba) (0.07 mg/kg DM) was characterized by containing the lowest
concentration of flavonoids. P. squarrosa (Ps) and T. versicolor (Tv) were poor in flavonoids
in our research. Janjušević et al. [63] obtained different results with T. versicolor (Tv)
flavonoids content harvested from northwest Romania. The obtained profile was rich and
included: flavones (6 compounds, e.g., apiin, vitexin, coumarins (2 compounds), flavanols
(6 compounds, e.g., quercetin and rutin), isoflavonoids, and biflavonoids (amentoflavone).
The flavonoid content was 67 mg/100 g DM. Other species with significant flavonoid
amounts influencing their antioxidant value were: Lactarius deterrimus Gröger, Boletus edulis
Bull. and Xerocomellus chrysenteron (Bull.) Šutara.

The compounds commonly found in mushrooms are sterols. The first reports of the
presence of sterol in mushroom fruiting bodies date back to 1887. The typical mushroom
sterols are distinguished by a high degree of unsaturation. Ergosterol is the main component
of the fungal cell membrane and is strongly associated with cytoplasm; it is also a precursor
to vitamin D2. Ergosterol can be converted to vitamin D2 through UV radiation. Finnish
scientists determined the total sterol content in species of large-fruited mushrooms in the
range of 625–774 mg/100 g DM [87]; a different ERG content characterized the analyzed
fungi species. The highest ERG content was observed in I. obliquus (Io) (863.33 mg/kg).
Kim et al. [66] and Shin et al. [88] determined ERG in I. obliquus, but not quantitatively.
Alternatively, our research found that H. fasciculare (Hf) was characterized by a four-times
lower ergosterol concentration compared with I. obliquus. Chemical composition studies of
the edible mushroom species have shown that they are a rich source of ergosterol. After
several years of storing the dried fruiting bodies, vitamin D2 content was high, averaging
1.43 µg/g DM in C. cibarius Fr. The differences in the ERG content were the results of the
different sites of insolation from which the fruiting bodies came from [89]. Agaricus bisporus
(J.E. Lange) Imbach contains an average of 61.5 mg/100 g of ergosterol. Research on the
influence of UV-C radiation on the formation of vitamin D2, carried out by the Center for
Plant and Food Science at the University of Western Australia, showed a high conversion
rate of ergosterol to vitamin D2 after short-term exposure to the UV-C radiation of these
species’ fruiting bodies during development. After UV-C radiation irradiating for 2.5, 5,
and 10 min, the ergosterol concentrations were 6.6, 15.6, and 23.1 µg/g DM, respectively.
Based on the Boletus edulis Bull. chemical analysis, it has been shown that the entire fruiting
body contains approx. 200 mg of vitamin D2 per 100 g of DM 89].

In the conducted analyses, it was found that the antioxidant activity measured with the
ABTS radical was 2.5–3.5 times higher in the isolates of I. obliquus (Io), P. ostreatus (Po), and
H. fasciculare (HF) compared to P. squarrosa (Ps) and B. adusta (Ba). The highest antioxidant
activity and the highest total phenolic acid content was found in T. versicolor (Tv) when
compared to the other isolates. This relationship corroborates that the phenolic compounds’
content may affect the level of antioxidant activity. Matijašević et al. [90] investigated
the total polyphenol content of the T. versicolor (Tv) isolate collected near Belgrade. The
concentration of the FPA in the mushroom ethanol extract was 25.8 mg GAE/g. Those
results were almost five times lower than the results determined in this study (Table 4).
However, these results align with Vamanu and Voica’s [91] research, who investigated
the total phenolics and antioxidant activity of the several mushrooms harvested from
the Moldova region of Romania. In the different isolates of T. versicolor (Tv) variegated
growths, significant differences were noted in FPA content, flavonoids, and antioxidant
capacity. These significant differences can be explained by the genetic factors (different
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fungal isolates), harvest site and time, type of solvent, and extraction conditions. These
compounds’ direct antioxidant mechanism captures the free oxygen radicals and reactive
oxygen forms and limits their cell production by inhibiting the activity of the oxidizing
enzymes (e.g., lipoxygenase) due to the easy hydrogen donation from the carboxyl group,
which reduces peroxides and hydroxides.

5. Conclusions

In conclusion, it should be stated that differences in the qualitative and quantitative
contents of active compounds may be the result of the different genetic properties and
locations from which mushroom fruiting bodies are obtained. Significant qualitative and
quantitative differences were found in the content of selected phenolic acids, flavonoids,
sterols, and carotenoids.

Chaga (Inonotus obliquus) was characterized by the highest tested compound content
among the studied mushrooms.

The antioxidant activity measured by the ABTS radical and the content of free phenolic
acids (FPA) was also tested. It was found that the highest antioxidant activity and the
highest total phenolic acid content were found in T. versicolor (Tv) compared to the other
isolates. Chaga was also characterized by a high antioxidant value and a high total phenolic
acid content. This dependence confirms that the content of phenolic compounds may
affect the level of antioxidant activity. Results show that mushrooms are an excellent
source of valuable antioxidant compounds, and the results presented in this study show
the enormous potential of fungi as a potential source of bioactive compounds.
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