Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bjerkandera Adusta Strain CCBAS 930 and VP Peroxidase Production Profile
2.3. MTX Biodecolorization by Crude Immobilized VP Peroxidase Produced by B. adusta CCBAS 930 (icVP/Ba)
2.3.1. Induction and Partial Purification of VP Peroxidase by B. adusta CCBAS 930
2.3.2. Immobilization of VP Peroxidase
2.3.3. MTX Bioremoval by icVP/Ba
2.4. Phenolic Compound (PhC) and Free Radical (SOR) Contents
2.5. Evaluation of Phyto-, Bio- and Genotoxicity
2.6. Statistical Analysis
3. Results
3.1. VP Production and Partial Purification
3.2. Bioremoval of Mitoxantrone by icVP/Ba
3.3. PhC and SOR Contents
3.4. Detection of Phyto-, Bio-, and Genotoxicity before and after MTX Treatment with icVP/Ba
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Purification Step | Total Volume (mL) | Total Protein (mg) | Total Actvity (U) | Specific Activity (U/mg of Protein) | Purification Fold | Yield (%) |
---|---|---|---|---|---|---|
Crude enzyme | 200 | 3.732 | 514.00 a | 137.72 | 1 | 100 |
(NH4)2SO4 precipitation | 5 | 4.18 | 128.80 a | 30.81 | 0.22 | 25.06 |
Ultrafiltration (30 kDa cut off) | 1 | 0.038 | 95.08 a | 2502.10 | 18.17 | 18.50 |
Samples | C | V | CIF | SD |
---|---|---|---|---|
MTX before treatment (initial solution 10 µg/mL) | 10 | - | 1.39 | 0.02 |
5 | 0.43 | 0.04 | ||
2.50 | 3.05 | 0.06 | ||
1.25 | 2.19 | 0.04 | ||
0.62 | 0.17 | 0.02 | ||
0.31 | 0.11 | 0.02 | ||
0.15 | 0.64 | 0.05 | ||
MTX after treatment with immobilized icVP/Ba | - | 100 | 0.85 | 0.07 |
50 | 0.98 | 0.05 | ||
25 | 0.93 | 0.05 | ||
12.50 | 0.76 | 0.04 | ||
6.25 | 0.15 | 0.01 | ||
3.12 | 0.09 | 0.02 | ||
1.56 | 0.10 | 0.02 |
References
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chugun, A.; Uchide, T.; Tsurimaki, C.; Nagasawa, H.; Sasaki, T.; Ueno, S.; Takagishi, K.; Hara, Y.; Temma, K. Mechanisms Responsible for Reduced Cardiotoxicity of Mitoxantrone Compared to Doxorubicin Examined in Isolated Guinea-Pig Heart Preparations. J. Vet. Med. Sci. 2008, 70, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Yao, S.; Zhang, H.; Liang, X. Purification and Characterization of a Versatile Peroxidase from Edible Mushroom Pleurotus Eryngii. Chin. J. Chem. Eng. 2010, 18, 824–829. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Campos, B.; Barata, C.; Lacorte, S. Degradation and Toxicity of Mitoxantrone and Chlorambucil in Water. Int. J. Environ. Sci. Technol. 2013, 12, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Jureczko, M.; Kalka, J. Cytostatic Pharmaceuticals as Water Contaminants. Eur. J. Pharmacol. 2020, 866, 172816. [Google Scholar] [CrossRef]
- Pereira, C.S.; Kelbert, M.; Daronch, N.A.; Michels, C.; de Oliveira, D.; Soares, H.M. Potential of Enzymatic Process as an Innovative Technology to Remove Anticancer Drugs in Wastewater. Appl. Microbiol. Biotechnol. 2020, 104, 23–31. [Google Scholar] [CrossRef]
- Jolibois, B.; Guerbet, M. Hospital Wastewater Genotoxicity. Ann. Occup. Hyg. 2006, 50, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T.; Szychowski, K.A. Possibility to Biotransform Anthracyclines by Peroxidases Produced by Bjerkandera Adusta CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity. Molecules 2021, 26, 462. [Google Scholar] [CrossRef] [PubMed]
- Jafarizad, A.; Rostamizadeh, M.; Zarei, M.; Gharibian, S. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions. Environ. Health Eng. Manag. 2017, 4, 185–193. [Google Scholar] [CrossRef]
- Stenglová-Netíková, I.R.; Petruzelka, L.; Stastny, M.; Stengl, V. Anthracycline Antibiotics Derivate Mitoxantrone—Destructive Sorption and Photocatalytic Degradation. PLoS ONE 2018, 13, e0193116. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Lin, Z.; Weng, X.; Owens, G.; Chen, Z. Removal Mechanism of Mitoxantrone by a Green Synthesized Hybrid Reduced Graphene Oxide @ Iron Nanoparticles. Chemosphere 2020, 246, 125700. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Removal of Pharmaceutical Compounds in Water and Wastewater Using Fungal Oxidoreductase Enzymes. Environ. Pollut. 2018, 234, 190–213. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Maithani, D.; Mishra, S.; Gangola, S.; Bhatt, R.; Huang, Y.; Chen, S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. J Hazard. Mater. 2021, 420, 126618. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Tiwari, M.; Parmarick, P.; Bhatt, K.; Gangola, S.; Adnan, M.; Singh, Y.; Bilal, M.; Ahmed, S.; Chen, S. Insights into the catalytic mechanism of ligninolytic peroxidase and laccase in lignin degradation. Bioremediat. J. 2022. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Christian, V.; Shrivastava, R.; Shukla, D.; Modi, H.A.; Vyas, B.R.M. Degradation of Xenobiotic Compounds by Lignin-Degrading White-Rot Fungi: Enzymology and Mechanisms Involved. Indian J. Exp. Biol. 2005, 43, 301–312. [Google Scholar] [PubMed]
- Tišma, M.; Zeli, B. White-Rot Fungi in Phenols, Dyes and Other Xenobiotics Treatment—A Brief Review. Croat. J. Food Sci. Technol. 2010, 2, 34–47. [Google Scholar]
- Korniłłowicz-Kowalska, T.; Rybczyńska-Tkaczyk, K. Decolorization and Biodegradation of Melanoidin Contained in Beet Molasses by an Anamorphic Strain of Bjerkandera Adusta CCBAS930 and its Mutants. World J. Microbiol. Biotechnol. 2021, 37. [Google Scholar] [CrossRef]
- Rybczyńska, K.; Korniłłowicz-Kowalska, T. Evaluation of Dye Compounds’ Decolorization Capacity of Selected H. Haematococca and T. Harzianum Strains by Principal Component Analysis (PCA). Water Air Soil Pollut. 2015, 226, 228. [Google Scholar] [CrossRef] [Green Version]
- Taboada-Puig, R.; Eibes, G.; Lloret, L.; Lú-Chau, T.A.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Fostering the Action of Versatile Peroxidase as a Highly Efficient Biocatalyst for the Removal of Endocrine Disrupting Compounds. New Biotechnol. 2016, 33, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Puig, R.; Lu-Chau, T.A.; Eibes, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Continuous Removal of Endocrine Disruptors by Versatile Peroxidase Using a Two-Stage System. Biotechnol. Prog. 2015, 31, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Boada, M.; Ruiz-Dueñas, F.J.; Pogni, R.; Basosi, R.; Choinowski, T.; Martínez, M.J.; Piontek, K.; Martínez, A.T. Versatile Peroxidase Oxidation of High Redox Potential Aromatic Compounds: Site-Directed Mutagenesis, Spectroscopic and Crystallographic Investigation of Three Long-Range Electron Transfer Pathways. J. Mol. Biol. 2005, 354, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T.; Szychowski, K.A.; Gmiński, J. Biotransformation and Toxicity Effect of Monoanthraquinone Dyes during Bjerkandera adusta CCBAS 930 Cultures. Ecotoxicol. Environ. Saf. 2020, 191, 110203. [Google Scholar] [CrossRef] [PubMed]
- Rybczyńska-Tkaczyk, K. Characteristics of New Anthraquinone Derivative-Decolorizing Versatile Peroxidase Produced by Bjerkandera Adusta Strain CCBAS 930. Int. Biodeterior. Biodegrad. 2022, 174, 105466. [Google Scholar] [CrossRef]
- Stadlmair, L.F.; Letzel, T.; Drewes, J.E.; Grassmann, J. Enzymes in Removal of Pharmaceuticals from Wastewater: A Critical Review of Challenges, Applications and Screening Methods for Their Selection. Chemosphere 2018, 205, 649–661. [Google Scholar] [CrossRef]
- Zhang, Y.; Geissen, S.-U. In Vitro Degradation of Carbamazepine and Diclofenac by Crude Lignin Peroxidase. J. Hazard. Mater. 2010, 176, 1089–1092. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Enzymatic Degradation of Tetracycline and Oxytetracycline by Crude Manganese Peroxidase Prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, J.; Lu, Y.; Jia, R. Degradation and Detoxification of the Triphenylmethane Dye Malachite Green Catalyzed by Crude Manganese Peroxidase from Irpex Lacteus F17. Environ. Sci. Pollut. Res. 2016, 23, 9585–9597. [Google Scholar] [CrossRef]
- Oliveira, S.F.; da Luz, J.M.R.; Kasuya, M.C.M.; Ladeira, L.O.; Correa Junior, A. Enzymatic Extract Containing Lignin Peroxidase Immobilized on Carbon Nanotubes: Potential Biocatalyst in Dye Decolourization. Saudi J. Biol. Sci. 2018, 25, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Rosa, G.P.; Barreto, M.D.C.; Pinto, D.C.G.A.; Seca, A.M.L. A Green and Simple Protocol for Extraction and Application of a Peroxidase-Rich Enzymatic Extract. Methods Protoc. 2020, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Al Sa’Ady, A.J.; Al Bahrani, M.H.A.; Aziz, G.M. Characterization and Immobilization of Peroxidase Extracted from Horse Radish and Decolorization of Some Dyes. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 328–339. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, J.; Bilal, M.; Li, X.; Shah, S.Z.H.; Mohamed, B.A.; Hadibarata, T.; Cheng, H. Peroxidases-based enticing biotechnological platforms for biodegradation and biotransformation of emerging contaminants. Chemosphere 2022, 307, 136035. [Google Scholar] [CrossRef] [PubMed]
- Korniłłowicz-Kowalska, T.; Wrzosek, M.; Ginalska, G.; Iglik, H.; Bancerz, R. Identification and Application of a New Fungal Strain Bjerkandera Adusta R59 in Decolorization of Daunomycin Wastes. Enzym. Microb. Technol. 2006, 38, 583–590. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K. Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930. Molecules 2021, 26, 6842. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Święciło, A.; Rybczyńska-Tkaczyk, K.; Najda, A.; Krzepiłko, A.; Prażak, R.; Zawiślak, G. Application of Growth Tests Employing a Δsod1 Mutant of Saccharomyces cerevisiae to Study the Antioxidant Activity of Berry Fruit Extracts. LWT 2018, 94, 96–102. [Google Scholar] [CrossRef]
- Paździoch-Czochra, M.; Malarczyk, E.; Sielewiesiuk, J. Relationship of Demethylation Processes to Veratric Acid Concentration and Cell Density in Cultures of Rhodococcus Erythropolis. Cell Biol. Int. 2003, 27, 325–336. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T. Biotransformation and Ecotoxicity Evaluation of Alkali Lignin in Optimized Cultures of Microscopic Fungi. Int. Biodeterior. Biodegrad. 2017, 117, 131–140. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation Strategies for Agricultural Water Management under Climate Change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Beneduce, L.; Brusetti, L.; Borruso, L.; Disciglio, G.; Tarantino, E. Treated Agro-Industrial Wastewater Irrigation of Tomato Crop: Effects on Qualitative/Quantitative Characteristics of Production and Microbiological Properties of the Soil. Agric. Water Manag. 2015, 149, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Hamid, M.; Rahman, K. Potential applications of peroxidases. Food Chem. 2009, 115, 1177–1186. [Google Scholar] [CrossRef]
- Shakerian, F.; Zhao, J.; Li, S.-P. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants—A review. Chemosphere 2020, 239, 124716. [Google Scholar] [CrossRef]
- Gao, Y.; Shah, K.; Kwok, I.; Wang, M.; Rome, L.H.; Mahendra, S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol. Adv. 2022, 57, 107936. [Google Scholar] [CrossRef]
- Varga, B.; Somogyi, V.; Meiczinger, M.; Kováts, N.; Domokos, E. Enzymatic Treatment and Subsequent Toxicity of Organic Micropollutants Using Oxidoreductases—A Review. J. Clean. Prod. 2019, 221, 306–322. [Google Scholar] [CrossRef]
- Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Oxidation of Pharmaceutically Active Compounds by a Ligninolytic Fungal Peroxidase. Biodegradation 2011, 22, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an Efficacious Approach to Remove Anticancer Drugs: A Study of Doxorubicin Degradation, Kinetic Parameters, and Toxicity Assessment. J. Hazard. Mater. 2021, 409, 124520. [Google Scholar] [CrossRef] [PubMed]
- Vitor, V.; Corso, C.R. Decolorization of Textile Dye by Candida Albicans Isolated from Industrial Effluents. J. Ind. Microbiol. Biotechnol. 2008, 35, 1353–1357. [Google Scholar] [CrossRef]
- Jureczko, M.; Przystaś, W.; Krawczyk, T.; Gonciarz, W.; Rudnicka, K. White-Rot Fungi-Mediated Biodegradation of Cytostatic Drugs—Bleomycin and Vincristine. J. Hazard. Mater. 2021, 407, 124632. [Google Scholar] [CrossRef] [PubMed]
- Šekuljica, N.; Prlainović, N.; Jakovetić, S.M.; Grbavčić, S.; Ognjanović, N.D.; Knežević-Jugović, Z.D.; Mijin, D. Removal of Anthraquinone Dye by Cross-Linked Enzyme Aggregates From Fresh Horseradish Extract. Clean Soil Air Water 2016, 44, 891–900. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M. Dye Decolorization and Detoxification Potential of Ca-Alginate Beads Immobilized Manganese Peroxidase. BMC Biotechnol. 2015, 15, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taboada-Puig, R.; Junghanns, C.; Demarche, P.; Moreira, M.T.; Feijoo, G.; Lema, J.M.; Agathos, S.N. Combined Cross-Linked Enzyme Aggregates from Versatile Peroxidase and Glucose Oxidase: Production, Partial Characterization and Application for the Elimination of Endocrine Disruptors. Bioresour. Technol. 2011, 102, 6593–6599. [Google Scholar] [CrossRef]
- Touahar, I.E.; Haroune, L.; Ba, S.; Bellenger, J.P.; Cabana, H. Characterization of Combined Cross-Linked Enzyme Aggregates from Laccase, Versatile Peroxidase and Glucose Oxidase, and Their Utilization for the Elimination of Pharmaceuticals. Sci. Total Environ. 2014, 481, 90–99. [Google Scholar] [CrossRef]
- Ikehata, K.; Buchanan, I.D.; Smith, D.W. Recent Developments in the Production of Extracellular Fungal Peroxidases and Laccases for Waste Treatment. J. Environ. Eng. Sci. 2004, 3, 1–19. [Google Scholar] [CrossRef]
- Jarosz-Wilkołazka, A.; Luterek, J.; Olszewska, A. Catalytic Activity of Versatile Peroxidase from Bjerkandera Fumosa at Different PH. Biocatal. Biotransform. 2008, 26, 280–287. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K.; Święciło, A.; Szychowski, K.A.; Korniłłowicz-Kowalska, T. Comparative Study of Eco- and Cytotoxicity during Biotransformation of Anthraquinone Dye Alizarin Blue Black B in Optimized Cultures of Microscopic Fungi. Ecotoxicol. Environ. Saf. 2018, 147, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Negreira, N.; Regueiro, J.; López de Alda, M.; Barceló, D. Transformation of Tamoxifen and Its Major Metabolites during Water Chlorination: Identification and in Silico Toxicity Assessment of Their Disinfection Byproducts. Water Res. 2015, 85, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, A.; Parato, B.; Spina, F.; Tigini, V.; Prigione, V.; Varese, G.C. Decolourisation and Detoxification in the Fungal Treatment of Textile Wastewaters from Dyeing Processes. New Biotechnol. 2011, 29, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, J.; Kühn, I.; Colque-Navarro, P.; Hart, M.; Iversen, A.; McKenzie, D.; Möllby, R. Microplate-Based Microbial Assay for Risk Assessment and (Eco)Toxic Fingerprinting of Chemicals. Anal. Chim. Acta 2003, 485, 121–130. [Google Scholar] [CrossRef]
- Abdel-Razek, A.S.; Refaat, B.M.; Abdel-Shakour, E.H.; Zaher, R.; Mohamed, M.K. Biodegradation of Phenol by Microbacterium terregenes Isolated from Oil Field NORM SOIL. J. Appl. Environ. Microbiol. 2015, 3, 63–69. [Google Scholar] [CrossRef]
- Cáceres, T.P.; Megharaj, M.; Malik, S.; Beer, M.; Naidu, R. Hydrolysis of Fenamiphos and Its Toxic Oxidation Products by Microbacterium sp. in Pure Culture and Groundwater. Bioresour. Technol. 2009, 100, 2732–2736. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Walker, A.; Morgan, J.A.W.; Wright, D.J. Role of Soil PH in the Development of Enhanced Biodegradation of Fenamiphos. Appl. Environ. Microbiol. 2003, 69, 7035–7043. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, W.; Bhatt, P.; Chen, S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front. Bioeng. Biotechnol. 2021, 9, 632095. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Rahmani, K.; Faramarzi, M.A.; Mahvi, A.H.; Gholami, M.; Esrafili, A.; Forootanfar, H.; Farzadkia, M. Elimination and Detoxification of Sulfathiazole and Sulfamethoxazole Assisted by Laccase Immobilized on Porous Silica Beads. Int. Biodeterior. Biodegrad. 2015, 97, 107–114. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybczyńska-Tkaczyk, K. Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930. Biology 2022, 11, 1553. https://doi.org/10.3390/biology11111553
Rybczyńska-Tkaczyk K. Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930. Biology. 2022; 11(11):1553. https://doi.org/10.3390/biology11111553
Chicago/Turabian StyleRybczyńska-Tkaczyk, Kamila. 2022. "Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930" Biology 11, no. 11: 1553. https://doi.org/10.3390/biology11111553
APA StyleRybczyńska-Tkaczyk, K. (2022). Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930. Biology, 11(11), 1553. https://doi.org/10.3390/biology11111553