Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Michèle M. Iskandar ORCID = 0000-0002-6076-8148

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 998 KiB  
Review
Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits
by Wenxi Zhu, Michèle M. Iskandar, Vahid Baeghbali and Stan Kubow
Foods 2023, 12(17), 3287; https://doi.org/10.3390/foods12173287 - 1 Sep 2023
Cited by 27 | Viewed by 8797
Abstract
Three-dimensional printing is one of the most precise manufacturing technologies with a wide variety of applications. Three-dimensional food printing offers potential benefits for food production in terms of modifying texture, personalized nutrition, and adaptation to specific consumers’ needs, among others. It could enable [...] Read more.
Three-dimensional printing is one of the most precise manufacturing technologies with a wide variety of applications. Three-dimensional food printing offers potential benefits for food production in terms of modifying texture, personalized nutrition, and adaptation to specific consumers’ needs, among others. It could enable innovative and complex foods to be presented attractively, create uniquely textured foods tailored to patients with dysphagia, and support sustainability by reducing waste, utilizing by-products, and incorporating eco-friendly ingredients. Notable applications to date include, but are not limited to, printing novel shapes and complex geometries from candy, chocolate, or pasta, and bio-printed meats. The main challenges of 3D printing include nutritional quality and manufacturing issues. Currently, little research has explored the impact of 3D food printing on nutrient density, bioaccessibility/bioavailability, and the impact of matrix integrity loss on diet quality. The technology also faces challenges such as consumer acceptability, food safety and regulatory concerns. Possible adverse health effects due to overconsumption or the ultra-processed nature of 3D printed foods are major potential pitfalls. This review describes the state-of-the-art of 3D food printing technology from a nutritional perspective, highlighting potential applications and current limitations of this technology, and discusses the potential nutritional risks and benefits of 3D food printing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 2551 KiB  
Review
Collagen Hydrolysates: A Source of Bioactive Peptides Derived from Food Sources for the Treatment of Osteoarthritis
by Christina E. Larder, Michèle M. Iskandar and Stan Kubow
Medicines 2023, 10(9), 50; https://doi.org/10.3390/medicines10090050 - 1 Sep 2023
Cited by 14 | Viewed by 8385
Abstract
Osteoarthritis (OA) is the most common joint disorder, with a social and financial burden that is expected to increase in the coming years. Currently, there are no effective medications to treat it. Due to limited treatment options, patients often resort to supplements, such [...] Read more.
Osteoarthritis (OA) is the most common joint disorder, with a social and financial burden that is expected to increase in the coming years. Currently, there are no effective medications to treat it. Due to limited treatment options, patients often resort to supplements, such as collagen hydrolysates (CHs). CHs are products with low molecular weight (MW) peptides, often between 3 and 6 kDa, and are a result of industrialized processed collagen. Collagen extraction is often a by-product of the meat industry, with the main source for collagen-based products being bovine, although it can also be obtained from porcine and piscine sources. CHs have demonstrated positive results in clinical trials related to joint health, such as decreased joint pain, increased mobility, and structural joint improvements. The bioactivity of CHs is primarily attributed to their bioactive peptide (BAP) content. However, there are significant knowledge gaps regarding the digestion, bioavailability, and bioactivity of CH-derived BAPs, and how different CH products compare in that regard. The present review discusses CHs and their BAP content as potential treatments for OA. Full article
Show Figures

Figure 1

15 pages, 1550 KiB  
Review
3D Food Printing Applications Related to Dysphagia: A Narrative Review
by Tim Lorenz, Michèle M. Iskandar, Vahid Baeghbali, Michael O. Ngadi and Stan Kubow
Foods 2022, 11(12), 1789; https://doi.org/10.3390/foods11121789 - 17 Jun 2022
Cited by 69 | Viewed by 10802
Abstract
Dysphagia is a condition in which the swallowing mechanism is impaired. It is most often a result of a stroke. Dysphagia has serious consequences, including choking and aspiration pneumonia, which can both be fatal. The population that is most affected by it is [...] Read more.
Dysphagia is a condition in which the swallowing mechanism is impaired. It is most often a result of a stroke. Dysphagia has serious consequences, including choking and aspiration pneumonia, which can both be fatal. The population that is most affected by it is the elderly. Texture-modified diets are part of the treatment plan for dysphagia. This bland, restrictive diet often contributes to malnutrition in patients with dysphagia. Both energy and protein intake are of concern, which is especially worrying, as it affects the elderly. Making texture-modified diets more appealing is one method to increase food intake. As a recent technology, 3D food printing has great potential to increase the appeal of textured foods. With extrusion-based printing, both protein and vegetable products have already been 3D printed that fit into the texture categories provided by the International Dysphagia Diet Standardization Initiative. Another exciting advancement is 4D food printing which could make foods even more appealing by incorporating color change and aroma release following a stimulus. The ultra-processed nature of 3D-printed foods is of nutritional concern since this affects the digestion of the food and negatively affects the gut microbiome. There are mitigating strategies to this issue, including the addition of hydrocolloids that increase stomach content viscosity and the addition of probiotics. Therefore, 3D food printing is an improved method for the production of texture-modified diets that should be further explored. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 1419 KiB  
Article
Assessment of Bioavailability after In Vitro Digestion and First Pass Metabolism of Bioactive Peptides from Collagen Hydrolysates
by Christina E. Larder, Michèle M. Iskandar and Stan Kubow
Curr. Issues Mol. Biol. 2021, 43(3), 1592-1605; https://doi.org/10.3390/cimb43030113 - 13 Oct 2021
Cited by 20 | Viewed by 5854
Abstract
Collagen hydrolysates (CHs) are composed of bioactive peptides (BAPs), which possess health enhancing properties. There is a knowledge gap regarding the bioavailability of these BAPs that involves intestinal transport and hepatic first pass effects. A simulated gastrointestinal model was used to generate digesta [...] Read more.
Collagen hydrolysates (CHs) are composed of bioactive peptides (BAPs), which possess health enhancing properties. There is a knowledge gap regarding the bioavailability of these BAPs that involves intestinal transport and hepatic first pass effects. A simulated gastrointestinal model was used to generate digesta from two CHs (CH-GL and CH-OPT), which were applied to a novel transwell co-culture of human intestinal epithelium cell line-6 (HIEC-6) and hepatic (HepG2) cells to simulate in vivo conditions of absorption and first pass metabolism. Peptide transport, hepatic first pass effects, and bioavailability were determined by measuring BAPs (Gly-Pro, Hyp-Gly, Ala-Hyp, Pro-Hyp, Gly-Pro-Hyp) using an innovative capillary electrophoresis method. All peptides were transported across the intestinal cell layer to varying degrees with both CHs; however, Gly-Pro-Hyp was transported only with CH-GL, but not CH-OPT. Notable hepatic production was observed for Ala-Hyp with both CH treatments, and for Pro-Hyp and Gly-Pro with CH-GL only. All peptides were bioavailable (>10%), except for Gly-Pro-Hyp after CH-OPT. Overall, a high degree of transport and hepatic first pass effects on CH-derived BAPs were observed. Further research is needed to explore the hepatic mechanisms related to the production of BAPs and the bifunctional effects of the bioavailable BAPs noted in this study. Full article
Show Figures

Figure 1

20 pages, 764 KiB  
Systematic Review
Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials
by Bahareh Barkhidarian, Lucas Roldos, Michèle M. Iskandar, Ahmad Saedisomeolia and Stan Kubow
Nutrients 2021, 13(9), 3001; https://doi.org/10.3390/nu13093001 - 28 Aug 2021
Cited by 43 | Viewed by 11509
Abstract
Micronutrient deficiencies are a worldwide public health concern. Emerging evidence supports the ability of probiotics to enhance micronutrient status, which could aid in the prevention of non-communicable disease-associated malnutrition. This systematic review evaluated evidence of the efficacy of probiotic supplementation to improve micronutrient [...] Read more.
Micronutrient deficiencies are a worldwide public health concern. Emerging evidence supports the ability of probiotics to enhance micronutrient status, which could aid in the prevention of non-communicable disease-associated malnutrition. This systematic review evaluated evidence of the efficacy of probiotic supplementation to improve micronutrient status in healthy subjects. The authors searched for published English language peer-reviewed journal articles in PubMed, Scopus, Embase, and Google Scholar databases from inception to July 2020 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of eligible studies was assessed using the Revised Cochrane Risk-of-Bias tool (RoB)2 and Risk of Bias in Non-Randomized Studies of Interventions tool (ROBINS-I tool). Fourteen original studies out of 2790 met the inclusion criteria. The results indicated that, despite varying degrees of efficacy, the intake of certain probiotics in healthy subjects was associated with a positive impact on the status of certain micronutrients (vitamin B12, calcium, folate, iron and zinc). A limitation was that studies were widely heterogeneous in terms of participant age, probiotic strain, species, dosage, intervention duration, and form of administration. Additional clinical trials are warranted to determine the most effective strains of probiotics, doses and durations of interventions. Full article
(This article belongs to the Topic Probiotics, Prebiotics and Postbiotics in Human Health)
Show Figures

Figure 1

17 pages, 858 KiB  
Article
Gastrointestinal Digestion Model Assessment of Peptide Diversity and Microbial Fermentation Products of Collagen Hydrolysates
by Christina E. Larder, Michèle M. Iskandar and Stan Kubow
Nutrients 2021, 13(8), 2720; https://doi.org/10.3390/nu13082720 - 7 Aug 2021
Cited by 12 | Viewed by 6131
Abstract
Osteoarthritis (OA), the most common form of arthritis, is associated with metabolic diseases and gut microbiome dysbiosis. OA patients often take supplements of collagen hydrolysates (CHs) with a high peptide content. Following digestion, some peptides escape absorption to induce prebiotic effects via their [...] Read more.
Osteoarthritis (OA), the most common form of arthritis, is associated with metabolic diseases and gut microbiome dysbiosis. OA patients often take supplements of collagen hydrolysates (CHs) with a high peptide content. Following digestion, some peptides escape absorption to induce prebiotic effects via their colonic fermentation to generate short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs) and colonic gases (NH4 and H2S). The capacity of CHs to generate microbial metabolites is unknown. Proteomic analysis of two CHs (CH-GL and CH-OPT) demonstrated different native peptide profiles with increased peptide diversity after in vitro gastric and small intestinal digestion. Subsequent 24 h fermentation of the CH digests in a dynamic gastrointestinal (GI) digestion model containing human fecal matter showed that CH-OPT increased (p < 0.05) H2S, SCFAs (propionic, butyric and valeric acids), BCFAs, and decreased NH4 in the ascending colon reactor with no major changes seen with CH-GL. No major effects were observed in the transverse and descending vessels for either CH. These findings signify that CHs can induce prebiotic effects in the ascending colon that are CH dependent. More studies are needed to determine the physiological significance of CH-derived colonic metabolites, in view of emerging evidence connecting the gut to OA and metabolic diseases. Full article
Show Figures

Figure 1

9 pages, 261 KiB  
Proceeding Paper
Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates
by Christina E. Larder, Michèle M. Iskandar and Stan Kubow
Proceedings 2020, 61(1), 12; https://doi.org/10.3390/IECN2020-06998 - 30 Oct 2020
Viewed by 1547
Abstract
Proteins, peptides and amino acids (AAs) that bypass upper gastrointestinal (GI) digestion can be fermented in the colonic regions. This could lead to microbial production of health promoting short-chain fatty acids (SCFAs). Nitrogenous compounds can also be fermented to generate potentially harmful branched [...] Read more.
Proteins, peptides and amino acids (AAs) that bypass upper gastrointestinal (GI) digestion can be fermented in the colonic regions. This could lead to microbial production of health promoting short-chain fatty acids (SCFAs). Nitrogenous compounds can also be fermented to generate potentially harmful branched chain fatty acids (BCFAs). As collagen hydrolysate (CH) supplements contain a high peptide content, we evaluated whether peptides that undergo intestinal CH digestion and microbial fermentation can generate SCFAs and BCFAs. Two bovine-sourced CH formulations (CH-GL and CH-OPT) underwent digestive processes and microbial fermentation for 24 h in a dynamic GI digestion model containing human fecal matter. After 24 h, CH-OPT showed a significant (p < 0.05) increase in SCFAs (propionic, butyric and valeric acids) in the ascending colonic vessel with no changes observed with CH-GL. Only CH-OPT showed a significant (p < 0.05) increase in BCFAs, also noted in the ascending colon. No significant (p < 0.05) changes to SCFAs and BCFAs were observed in the transverse and descending colons for both CHs. These findings demonstrate that CHs can induce microbial production of SCFAs and BCFAs although this appears to depend on the CH tested. More studies are needed to determine the physiological significance of these microbial metabolites from intake of CH supplements. Full article
20 pages, 4344 KiB  
Article
Probiotic Supplementation in a Clostridium difficile-Infected Gastrointestinal Model Is Associated with Restoring Metabolic Function of Microbiota
by Mohd Baasir Gaisawat, Chad W. MacPherson, Julien Tremblay, Amanda Piano, Michèle M. Iskandar, Thomas A. Tompkins and Stan Kubow
Microorganisms 2020, 8(1), 60; https://doi.org/10.3390/microorganisms8010060 - 29 Dec 2019
Cited by 24 | Viewed by 6792
Abstract
Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an [...] Read more.
Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota. In the present study, we assessed the ability of several single strain probiotics and a probiotic mixture to change the metabolic functions of normal and C. difficile-infected fecal samples. The production of short-chain fatty acids (SCFAs), hydrogen sulfide (H2S), and ammonia was measured, and changes in microbial composition were assessed by 16S rRNA gene amplicon sequencing. The C. difficile-infection in fecal samples resulted in a significant decrease (p < 0.05) in SCFA and H2S production, with a lower microbial alpha diversity. All probiotic treatments were associated with significantly increased (p < 0.05) levels of SCFAs and restored H2S levels. Probiotics showed no effect on microbial composition of either normal or C. difficile-infected fecal samples. These findings indicate that probiotics may be useful to improve the metabolic dysregulation associated with C. difficile infection. Full article
(This article belongs to the Special Issue Probiotics: From Quality Assessment to Microbial Ecology)
Show Figures

Figure 1

14 pages, 1910 KiB  
Article
Effect of Non-Conventional Drying Methods on In Vitro Starch Digestibility Assessment of Cooked Potato Genotypes
by Christina E. Larder, Vahid Baeghbali, Celeste Pilon, Michèle M. Iskandar, Danielle J. Donnelly, Sebastian Pacheco, Stephane Godbout, Michael O. Ngadi and Stan Kubow
Foods 2019, 8(9), 382; https://doi.org/10.3390/foods8090382 - 2 Sep 2019
Cited by 11 | Viewed by 3509
Abstract
Potatoes (Solanum tuberosum L.) are a good dietary source of carbohydrates in the form of digestible starch (DS) and resistant starch (RS). As increased RS content consumption can be associated with decreased chronic disease risk, breeding efforts have focused on identifying potato [...] Read more.
Potatoes (Solanum tuberosum L.) are a good dietary source of carbohydrates in the form of digestible starch (DS) and resistant starch (RS). As increased RS content consumption can be associated with decreased chronic disease risk, breeding efforts have focused on identifying potato varieties with higher RS content, which requires high-throughput analysis of starch profiles. For this purpose, freeze drying of potatoes has been used but this approach leads to inaccurate RS values. The present study objective was to assess the starch content (RS, DS and total starch (TS)) of three cooked potato genotypes that were dried using freeze drying and innovative drying techniques (microwave vacuum drying, instant controlled pressure drop drying and conductive hydro-drying) relative to freshly cooked potato samples. Depending on the genotype, all drying methods showed one or more starch measures that were significantly different from freshly cooked values. The combination of ultrasound and infrared assisted conductive hydro-drying was the only method identified to be associated with accurate assessment of DS and TS content relative to fresh samples. The drying treatments were all generally associated with highly variable RS content relative to fresh controls. We conclude that freshly cooked samples must be used for selecting varieties with a high proportion of RS starch as drying of cooked potatoes leads to unreliable RS measurements. Full article
(This article belongs to the Special Issue Foods of Plant Origin)
Show Figures

Figure 1

14 pages, 5400 KiB  
Article
Probiotic Supplementation is Associated with Increased Antioxidant Capacity and Copper Chelation in C. difficile-Infected Fecal Water
by Mohd Baasir Gaisawat, Michèle M. Iskandar, Chad W. MacPherson, Thomas A. Tompkins and Stan Kubow
Nutrients 2019, 11(9), 2007; https://doi.org/10.3390/nu11092007 - 26 Aug 2019
Cited by 26 | Viewed by 6113
Abstract
Probiotic supplementation plays a key role in maintaining intestinal homeostasis due to its ability to modulate gut microbiota. Although their potential as potent antioxidants have previously been explored, their ability to affect the redox status in the gut lumen of healthy subjects or [...] Read more.
Probiotic supplementation plays a key role in maintaining intestinal homeostasis due to its ability to modulate gut microbiota. Although their potential as potent antioxidants have previously been explored, their ability to affect the redox status in the gut lumen of healthy subjects or those with gastrointestinal (GI) disorders remains unclear. In our study, we assessed the ability of single strain and multispecies probiotic supplementation to cause a change in the redox status of normal fecal water and in Clostridium (C.) difficile-infected fecal water using a simulated gastrointestinal model. Changes in redox status were assessed by ferric-reducing antioxidant power (FRAP), 2’,2’-diphenyl-1-picrylhydrazyl (DPPH), and iron and copper chelation assays. The findings from our study showed that in normal fecal water, probiotic supplements, apart from Lactobacillus (L.) rhamnosus R0011, showed a significant increase in iron chelation (p < 0.05), which was associated with lower FRAP and copper chelation. In C. difficile-infected fecal water, all probiotic supplements showed a significant increase in FRAP (p < 0.05) and were associated with increased copper chelation. The DPPH assay showed no treatment effect in either fecal water. These findings suggest that C. difficile mediates dysregulation of redox status, which is counteracted by probiotics through ferric-reducing ability and copper chelation. Full article
(This article belongs to the Special Issue Nutrients 2009–2019: The Present and the Future of Nutrition)
Show Figures

Graphical abstract

12 pages, 887 KiB  
Article
Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model
by Joelle Khairallah, Shima Sadeghi Ekbatan, Kebba Sabally, Michèle M. Iskandar, Raza Hussain, Atef Nassar, Lekha Sleno, Laetitia Rodes, Satya Prakash, Danielle J. Donnelly and Stan Kubow
Antioxidants 2018, 7(3), 43; https://doi.org/10.3390/antiox7030043 - 20 Mar 2018
Cited by 8 | Viewed by 6549
Abstract
A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 [...] Read more.
A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP) assay. Among the colonic reactors, parent (poly)phenols were detected in the ascending (AC), but not the transverse (TC) or descending (DC) colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h) was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h) and TC and DC (T = 24 h). The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Prevention of Non-Communicable Diseases)
Show Figures

Graphical abstract

11 pages, 240 KiB  
Article
Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System
by Shima Sadeghi Ekbatan, Michele M. Iskandar, Lekha Sleno, Kebba Sabally, Joelle Khairallah, Satya Prakash and Stan Kubow
Foods 2018, 7(1), 8; https://doi.org/10.3390/foods7010008 - 12 Jan 2018
Cited by 46 | Viewed by 9180
Abstract
The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of [...] Read more.
The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of the human intestinal microbial ecosystem (GI model). Simulated digestion showed extensive degradation of the parent compounds and the generation of microbial phenolic metabolites. To characterize the transport and metabolism of microbial phenolic metabolites following digestion, a co-culture of intestinal Caco-2 and hepatic HepG2 cells was exposed to the PRPE-derived digests obtained from the colonic vessels. Following a 2 h incubation of the digesta with the Caco-2/HepG2 co-cultures, approximately 10–15% of ferulic, dihydrocaffeic, and dihydroferulic acids and 3–5% of 3-hydroxybenzoic, 3-hydroxyphenylpropionic, and coumaric acids were observed in the basolateral side, whereas 3-hydroxyphenylacetic acid, phenylpropanoic acid, and cinnamic acid were not detected. Subsequent HepG2 cellular metabolism led to major increases in ferulic, dihydrocaffeic, 3-hydroxyphenylpropionic, and coumaric acids ranging from 160–370%. These findings highlight the importance of hepatic metabolism towards the generation of secondary metabolites of polyphenols despite low selective Caco-2 cellular uptake of microbial phenolic metabolites. Full article
(This article belongs to the Section Food Nutrition)
17 pages, 2534 KiB  
Article
Effects of Simulated Human Gastrointestinal Digestion of Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells
by Stan Kubow, Michèle M. Iskandar, Emiliano Melgar-Bermudez, Lekha Sleno, Kebba Sabally, Behnam Azadi, Emily How, Satya Prakash, Gabriela Burgos and Thomas zum Felde
Nutrients 2017, 9(9), 953; https://doi.org/10.3390/nu9090953 - 29 Aug 2017
Cited by 34 | Viewed by 7314
Abstract
A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for [...] Read more.
A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells. Full article
(This article belongs to the Special Issue Effects of Polyphenol-Rich Foods on Human Health)
Show Figures

Figure 1

24 pages, 652 KiB  
Article
High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity
by Michèle M. Iskandar, Larry C. Lands, Kebba Sabally, Behnam Azadi, Brian Meehan, Nadir Mawji, Cameron D. Skinner and Stan Kubow
Foods 2015, 4(2), 184-207; https://doi.org/10.3390/foods4020184 - 28 May 2015
Cited by 51 | Viewed by 7624
Abstract
Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) [...] Read more.
Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue High Pressure Processing of Foods)
Show Figures

Graphical abstract

Back to TopTop