Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the ‘Onaway’ Potato Extract
2.2. In Vitro Gastrointestinal Digestion of Polyphenol-Rich Potato Extract
2.3. Sample Preparation for the Cell Culture Experiments
2.4. Cell lines and Culture Conditions
2.5. Caco-2/HepG2 Co-Culture System
2.6. LC-MS Analysis for Identification of Phenolics Using Targeted Metabolite Analysis
3. Results and Discussion
3.1. Composition of the Digesta of PRPE Identified by Targeted Metabolite Profiling
3.2. Transport and Metabolism of Phenolic Compounds by Caco-2/HepG2 Cells
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; et al. Mind the gap—Deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—A position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 2015, 59, 1307–1323. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.; Clifford, M. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Brown, C. Antioxidant in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Kubow, S.; Hobson, L.; Iskandar, M.M.; Sabally, K.; Donnelly, D.J.; Agellon, L.B. Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol. Nutr. Food Res. 2014, 58, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Morand, C.; Manach, C.; Besson, C.; Scalbert, A. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br. J. Nutr. 2006, 96, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [PubMed]
- Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic. Res. 2006, 40, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, M.P.; Verny, M.A.; Besson, C.; Rémésy, C.; Scalbert, A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J. Nutr. 2003, 133, 1853–1859. [Google Scholar] [PubMed]
- Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab. Dispos. 2009, 37, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Ekbatan, S.; Sleno, L.; Sabally, K.; Khairallah, J.; Azadi, B.; Rodes, L.; Prakash, S.; Donnelly, D.J.; Kubow, S. Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chem. 2016, 204, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Kubow, S.; Iskandar, M.M.; Sabally, K.; Azadi, B.; Sadeghi Ekbatan, S.; Kumarathasan, P.; Das, D.D.; Prakash, S.; Burgos, G.; Zum Felde, T. Biotransformation of anthocyanins from two purple-fleshed sweet potato accessions in a dynamic gastrointestinal system. Food Chem. 2016, 192, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Kubow, S.; Iskandar, M.M.; Melgar-Bermudez, E.; Sleno, L.; Sabally, K.; Azadi, B.; How, E.; Prakash, S.; Burgos, G.; Zum Felde, T. Effects of simulated human gastrointestinal digestion of two purple-fleshed potato cultivars on anthocyanin composition and cytotoxicity in colonic cancer and non-tumorigenic cells. Nutrients 2017, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Aura, A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008, 7, 407–429. [Google Scholar] [CrossRef]
- Rechner, A.; Kuhnle, G.; Bremner, P.; Hubbard, G.; Moore, K.; Rice-Evans, C. The metabolic fate of dietary polyphenols in humans. Free Radic. Biol. Med. 2002, 33, 220–235. [Google Scholar] [CrossRef]
- Rubió, L.; Macià, A.; Castell-Auví, A.; Pinent, M.; Blay, M.T.; Ardévol, A.; Romero, M.P.; Motilva, M.J. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chem. 2014, 149, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Yuan, C.; Zhang, F.; Huan, M.; Cao, W.; Li, K.; Yang, J.; Cao, D.; Zhou, S.; Mei, Q. Intestinal absorption and first-pass metabolism of polyphenol compounds in rat and their transport dynamics in Caco-2 cells. PLoS ONE 2012, 7, e29647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, J.; Shi, X.; Miao, S.; Li, Y.; Wen, A. Absorption and metabolism characteristics of rutin in Caco-2 cells. Sci. World J. 2013, 2013, 382350. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, T.; Cui, X.; Uss, A.; Cheng, K. Development of in vitro pharmacokinetic screens using Caco-2, human hepatocyte, and Caco-2/human hepatocyte hybrid systems for the prediction of oral bioavailability in humans. J. Biomol. Screen. 2007, 12, 1084–1091. [Google Scholar] [PubMed]
- Lançon, A.; Hanet, N.; Jannin, B.; Delmas, D.; Heydel, J.-M.; Lizard, G.; Chagnon, M.C.; Artur, Y.; Latruffe, N. Resveratrol in human hepatoma HepG2 cells: Metabolism and inducibility of detoxifying enzymes. Drug Metab. Dispos. 2007, 35, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Li, C.; Hsieh, Y.; Montgomery, D.; Liu, T.; White, R. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats. J. Pharmacol. Toxicol. Methods 2006, 53, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.; Chen, Y.; Liu, T.; Li, C.; Cui, X.; White, R.; Cheng, K. Evaluation of a novel in vitro Caco-2 hepatocyte hybrid system for predicting in vivo oral bioavailability. Drug Metab. Dispos. 2004, 32, 937–942. [Google Scholar] [PubMed]
- Molly, K.; Vande Woestyne, M.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Rieger, M.; Parlesak, A.; Pool-Zobel, B.; Rechkemmer, G.; Bode, C. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of ‘faecal water’. Carcinogenesis 1999, 20, 2311–2316. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Shimizu, M. Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 2003, 67, 856–862. [Google Scholar]
- Shakya, R.; Navarre, D.A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem. 2006, 54, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr. 2008, 138, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, M.P.; Remesy, C.; Scalbert, A.; Cheynier, V.; Souquet, J.M.; Poutanen, K.; Aura, A.M. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother. 2006, 60, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.S.; Moore, K.P.; Rice-Evans, C.A. Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products. Free Radic. Biol. Med. 2004, 36, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Jiménez-Girón, A.; Muñoz-González, I.; Esteban-Fernández, A.; Gil-Sánchez, I.; Dueñas, M.; Martín-Álvarez, P.J.; Pozo-Bayón, M.A.; Bartolomé, B.; Moreno-Arribas, M.V. Application of a new dynamic gastrointestinal simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Res. Int. 2015, 72, 149–159. [Google Scholar] [CrossRef]
- Jenner, A.M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005, 38, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.; Kerimi, A.; Poquet, L.; Williamson, G. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4). Arch. Biochem. Biophys. 2016, 599, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Poquet, L.; Clifford, M.N.; Williamson, G. Investigation of the metabolic fate of dihydrocaffeic acid. Biochem. Pharmacol. 2008, 75, 1218–1229. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Kobayashi, S. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 52, 2518–2526. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Kobayashi, S.; Shimizu, M. Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 2003, 67, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y. Transepithelial transport of microbial metabolites of quercetin in intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2005, 53, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Rechner, A.R.; Spencer, J.P.E.; Kuhnle, G.; Hahn, U.; Rice-Evans, C.A. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radic. Biol. Med. 2001, 30, 1213–1222. [Google Scholar] [CrossRef]
- Gonthier, M.P.; Donovan, J.L.; Texier, O.; Felgines, C.; Remesy, C.; Scalbert, A. Metabolism of dietary procyanidins in rats. Free Radic. Biol. Med. 2003, 35, 837–844. [Google Scholar] [CrossRef]
- Moridani, M.Y.; Scobie, H.; O’Brien, P.J. Metabolism of caffeic acid by isolated rat hepatocytes and subcellular fractions. Toxicol. Lett. 2002, 133, 141–151. [Google Scholar] [CrossRef]
- Zhao, Z.; Moghadasian, M.H. Bioavailability of hydroxycinnamates: A brief review of in vivo and in vitro studies. Phytochem. Rev. 2010, 9, 133–145. [Google Scholar] [CrossRef]
- Van Duynhoven, J.; van der Hooft, J.J.J.; van Dorsten, F.A.; Peters, S.; Foltz, M.; Gomez-Roldan, V.; Vervoort, J.; de Vos, R.C.H.; Jacobs, D.M. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J. Proteome Res. 2014, 13, 2668–2678. [Google Scholar] [CrossRef] [PubMed]
- Margalef, M.; Pons, Z.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A. Plasma kinetics and microbial biotransformation of grape seed flavanols in rats. J. Funct. Foods 2015, 12, 478–488. [Google Scholar] [CrossRef]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
Theoretical Mass (m/z) 2 | Measured Mass | Mass Accuracy (ppm) | Retention Time (min) | Common Name | Systematic Name | PRPE |
---|---|---|---|---|---|---|
609.1461 | 609.1422 | 6.4 | 8.7 | Rutin | Quercetin-3-O-rutinoside | + |
353.0878 | 353.0863 | 4.3 | 7.5 | Chlorogenic acid | (1S,3R,4R,5R)-3-{[(2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid | + |
301.0354 | 301.0395 | 13.7 | 8.0 | Quercetin | 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | T |
195.0663 | 195.0642 | 10.6 | 8.6 | Dihydroferulic acid | 3-(4-Hydroxy-3-methoxyphenyl)propionic acid | + |
193.0506 | 193.0507 | 0.5 | 8.5 | Ferulic acid | (E)-3-(4-Hydroxy-3-methoxy-phenyl)prop-2-enoic acid | + |
181.0506 | 181.0509 | 1.6 | 7.0 | Dihydrocaffeic acid | 3-(3′,4′-Dihydroxyphenyl)propionic acid | + |
179.0325 | 179.341 | 8.9 | 8.0 | Caffeic acid | 3,4-Dihydroxycinnamic acid | + |
167.0350 | 167.0349 | 0.5 | 6.6 | Vanillic acid | 4-Hydroxy-3-methoxybenzoic acid | + |
165.0557 | 165.054 | 10 | 8.4 | 3-Hydroxyphenylpropionic acid | 3-(3-Hydroxyphenyl)propionic acid | + |
163.0401 | 163.0409 | 4.9 | 8.4 | Coumaric acid | The isomer is not specified from our data | + |
153.0193 | 153.0192 | 0.6 | 7.2 | Protocatechuic acid | 3,4-Dihydroxybenzoic acid | + |
151.0401 | 151.0398 | 1.98 | 7.7 | 3-Hydroxyphenylacetic acid | 3-Hydroxyphenylacetic acid | + |
149.0608 | 149.0599 | 6.03 | 9.4 | Phenylpropanoic acid | Phenylpropanoic acid | + |
147.0452 | 147.0453 | 0.6 | 8.5 | Cinnamic acid | 3-Phenylprop-2-enoic acid | + |
137.0244 | 137.0241 | 2.1 | 7.2 | 3-Hydroxybenzoic acid | 3-Hydroxybenzoic acid | + |
121.0295 | 121.0297 | 1.6 | 9.0 | Benzoic acid | Benzoic acid | + |
Theoretical Mass (m/z) | Measured Mass | Mass Accuracy (ppm) | Retention Time (min) | Common Name | PRPE | |||
---|---|---|---|---|---|---|---|---|
Digesta b (0 h) | Percentage of Digesta Value c | Percentage of Basolateral Value d | ||||||
A (2 h) | B (2 h) | B (5 h) | ||||||
195.0663 | 195.0642 | 10.6 | 8.6 | Dihydroferulic acid | 1.22 | 78 | 10 | 78 |
193.0506 | 193.0507 | 0.5 | 8.5 | Ferulic acid | 1.07 | 90 | 11 | 166 |
181.0506 | 181.0509 | 1.6 | 7.0 | Dihydrocaffeic acid | 3.00 | 67 | 15 | 338 |
165.0557 | 165.054 | 10 | 8.4 | 3-Hydroxyphenylpropionic acid | 15.11 | 69 | 4 | 233 |
163.0401 | 163.0409 | 4.9 | 8.4 | Coumaric acid | 2.44 | 68 | 3 | 212 |
151.0401 | 151.0398 | 1.98 | 7.7 | 3-Hydroxyphenylacetic acid | 1.02 | 70 | - | - |
149.0608 | 149.0599 | 6.03 | 9.4 | Phenylpropanoic acid | 0.32 | 65 | - | - |
147.0452 | 147.0453 | 0.6 | 8.5 | Cinnamic acid | 0.31 | 67 | - | - |
137.0244 | 137.0241 | 2.1 | 7.2 | 3-Hydroxybenzoic acid | 5.12 | 50 | 5 | 100 |
121.0295 | 121.0297 | 1.6 | 9.0 | Benzoic acid | + | + | + | + |
Theoretical Mass (m/z) | Measured Mass | Mass Accuracy (ppm) | Retention Time (min) | Common Name | Control | |||
---|---|---|---|---|---|---|---|---|
Control b (0 h) | Percentage of Control Value at 0 h c | Percentage of Basolateral Value d | ||||||
A (2 h) | B (2 h) | B (5 h) | ||||||
181.0506 | 181.0509 | 1.6 | 7.0 | Dihydrocaffeic acid | 1.1 | 26 | 26 | 123 |
165.0557 | 165.054 | 10 | 8.4 | 3-Hydroxyphenylpropionic acid | 0.53 | 90 | - | - |
151.0401 | 151.0398 | 1.98 | 7.7 | 3-Hydroxyphenylacetic acid | 0.42 | 100 | - | - |
149.0608 | 149.0599 | 6.03 | 9.4 | Phenylpropanoic acid | 0.28 | 100 | - | - |
121.0295 | 121.0297 | 1.6 | 9.0 | Benzoic acid | + | + | + | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi Ekbatan, S.; Iskandar, M.M.; Sleno, L.; Sabally, K.; Khairallah, J.; Prakash, S.; Kubow, S. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System. Foods 2018, 7, 8. https://doi.org/10.3390/foods7010008
Sadeghi Ekbatan S, Iskandar MM, Sleno L, Sabally K, Khairallah J, Prakash S, Kubow S. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System. Foods. 2018; 7(1):8. https://doi.org/10.3390/foods7010008
Chicago/Turabian StyleSadeghi Ekbatan, Shima, Michele M. Iskandar, Lekha Sleno, Kebba Sabally, Joelle Khairallah, Satya Prakash, and Stan Kubow. 2018. "Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System" Foods 7, no. 1: 8. https://doi.org/10.3390/foods7010008
APA StyleSadeghi Ekbatan, S., Iskandar, M. M., Sleno, L., Sabally, K., Khairallah, J., Prakash, S., & Kubow, S. (2018). Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System. Foods, 7(1), 8. https://doi.org/10.3390/foods7010008