Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamic In Vitro Gastrointestinal Digestion of Collagen Hydrolysates
2.2. Short and Branched Chain Fatty Acids
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lane, N.E.; Shidara, K.; Wise, B.L. Osteoarthritis year in review 2016: Clinical. Osteoarthr. Cartil. 2017, 25, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.E.; Oesser, S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: A review of the literature. Curr. Med. Res. Opin. 2006, 22, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Xiao, R.; Li, J.B.; Zhu, Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1577–1587. [Google Scholar] [CrossRef]
- Eymard, F.; Parsons, C.; Edwards, M.H.; Petit-Dop, F.; Reginster, J.Y.; Bruyère, O.; Richette, P.; Cooper, C.; Chevalier, X. Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthr. Cartil. 2015, 23, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Miller, J.D.; Lee, F.H.; Pettitt, D.; Russell, M.W. Prevalence of cardiovascular disease risk factors among us adults with self-reported osteoarthritis: Data from the third national health and nutrition examination survey. Am. J. Manag. Care 2002, 8, S383–S391. [Google Scholar]
- Baudart, P.; Louati, K.; Marcelli, C.; Berenbaum, F.; Sellam, J. Association between osteoarthritis and dyslipidaemia: A systematic literature review and meta-analysis. RMD Open 2017, 3, e000442. [Google Scholar] [CrossRef]
- Schott, E.M.; Farnsworth, C.W.; Grier, A.; Lillis, J.A.; Soniwala, S.; Dadourian, G.H.; Bell, R.D.; Doolittle, M.L.; Villani, D.A.; Awad, H.; et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight 2018, 3, e95997. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Cooper, C.; Reginster, J.-Y.; Hochberg, M.; Branco, J.; Bruyère, O.; Chapurlat, R.; Al-Daghri, N.; Dennison, E.; Herrero-Beaumont, G.; et al. Type 2 diabetes mellitus and osteoarthritis. Semin. Arthritis Rheum. 2019, 49, 9–19. [Google Scholar] [CrossRef]
- Sellam, J.; Berenbaum, F. Is osteoarthritis a metabolic disease? Jt. Bone Spine 2013, 80, 568–573. [Google Scholar] [CrossRef]
- Kluzek, S.; Newton, J.L.; Arden, N.K. Is osteoarthritis a metabolic disorder? Br. Med. Bull. 2015, 115, 111–121. [Google Scholar] [CrossRef]
- Bernado, M.L.R.; Azarcon, J.A.C. A randomized control trial on the effects of oral collagen treatment on the medial knee joint space and functional outcome among veterans medical center patients diagnosed with osteoarthritis of the knee. Philipp. Acad. Rehabil. Med. Process. 2012, 4, 1–8. [Google Scholar]
- Bruyère, O.; Zegels, B.; Leonori, L.; Rabenda, V.; Janssen, A.; Bourges, C.; Reginster, J.Y. Effect of collagen hydrolysate in articular pain: A 6-month randomized, double-blind, placebo controlled study. Complement. Ther. Med. 2012, 20, 124–130. [Google Scholar] [CrossRef]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J. Sci. Food Agric. 2015, 95, 702–707. [Google Scholar] [CrossRef]
- Zdzieblik, D.; Gollhofer, A.; Konig, D.; Oesser, S.; Baumstark, M.W.; Konig, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Zdzieblik, D.; Oesser, S.; Gollhofer, A.; König, D. Improvement of activity-related knee joint discomfort following supplementation of specific collagen peptides. Appl. Physiol. Nutr. Metab. 2017, 42, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Benito-Ruiz, P.; Camacho-Zambrano, M.M.; Carrillo-Arcentales, J.N.; Mestanza-Peralta, M.A.; Vallejo-Flores, C.A.; Vargas-López, S.V.; Villacís-Tamayo, R.A.; Zurita-Gavilanes, L.A. A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolysate, for improving joint comfort. Int. J. Food Sci. Nutr. 2009, 60, 99–113. [Google Scholar] [CrossRef]
- Feliciano, D.D.S.; Gonzalex-Suarez, C.B.; Bernardo-Bueno, M.M.; Malvar, A.K.G.; Cua, R.C.A.; Tan-Sales, B.G.K.; Aycardo, S.M.O.; Tan-Ong, M.; Chan, R.; Reyes, F.D.L. Effect of collagen hydrolysate as adjuvant treatment to exercise for knee osteoarthiritis. Philipp. Acad. Rehabil. Med. 2017, 9, 4–15. [Google Scholar]
- Skov, K.; Oxfeldt, M.; Thøgersen, R.; Hansen, M.; Bertram, H.C. Enzymatic hydrolysis of a collagen hydrolysate enhances postprandial absorption rate-a randomized controlled trial. Nutrients 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; Gómez-Guillén, M.C.; Montero, P. Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Res. Int. 2013, 54, 790–795. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; Zhang, L.; Li, B.; Zhang, Z.; Hou, H.; Zhao, X.; FitzGerald, R.J. In vitro assessment of the multifunctional bioactive potential of alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 2015, 95, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Therkildsen, M.; Aluko, R.E.; Lametsch, R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 2011–2027. [Google Scholar] [CrossRef] [PubMed]
- Dorozynska, I.; Majewska-Szczepanik, M.; Marcinska, K.; Szczepanik, M. Partial depletion of natural gut flora by antibiotic aggravates collagen induced arthritis (cia) in mice. Pharmacol. Rep. 2014, 66, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Sirico, F.; Salvatore, M.; Clotilde, C.; Rocco, S.; Stefania, M.; Franca Di, M.; Daria, N. Habits and beliefs related to food supplements: Results of a survey among italian students of different education fields and levels. PLoS ONE 2018, 13, e0191424. [Google Scholar] [CrossRef]
- Dickinson, A.; MacKay, D.; Wong, A. Consumer attitudes about the role of multivitamins and other dietary supplements: Report of a survey. Nutr. J. 2015, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. S2), S1–S63. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, B.; Zhang, J.; Li, W.; Mou, F.; Wang, H.; Zou, Q.; Zhong, B.; Wu, L.; Wei, H.; et al. Role of the gut microbiome in modulating arthritis progression in mice. Sci. Rep. 2016, 6, 30594. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2017, 57, 1–24. [Google Scholar] [CrossRef]
- Peng, M.; Biswas, D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit. Rev. Food Sci. Nutr. 2017, 57, 3987–4002. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial fermentation of dietary protein: An important factor in diet-microbe-host interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef]
- Nyangale, E.P.; Mottram, D.S.; Gibson, G.R. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J. Proteome Res. 2012, 11, 5573–5585. [Google Scholar] [CrossRef]
- Abdul Rahim, M.B.H.; Chilloux, J.; Martinez-Gili, L.; Neves, A.L.; Myridakis, A.; Gooderham, N.; Dumas, M.-E. Diet-induced metabolic changes of the human gut microbiome: Importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 2019, 56, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol. 2018, 9, 1832. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef]
- Mollica, M.P.; Mattace Raso, G.; Cavaliere, G.; Trinchese, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Pirozzi, C.; Di Guida, F.; Lama, A.; et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017, 66, 1405–1418. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, Y.; Zhou, Q.; Wang, C.; Chen, L.; Di, W.; Zhang, Y. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin. Sci. 2020, 134, 289–302. [Google Scholar] [CrossRef]
- Saresella, M.; Marventano, I.; Barone, M.; La Rosa, F.; Piancone, F.; Mendozzi, L.; d’Arma, A.; Rossi, V.; Pugnetti, L.; Roda, G.; et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Sheflin, A.M.; Borresen, E.C.; Wdowik, M.J.; Rao, S.; Brown, R.J.; Heuberger, A.L.; Broeckling, C.D.; Weir, T.L.; Ryan, E.P. Pilot dietary intervention with heat-stabilized rice bran modulates stool microbiota and metabolites in healthy adults. Nutrients 2015, 7, 1282–1300. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kratz, M.; Damman, C.J.; Hullar, M. Mechanisms linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab. 2016, 101, 1445–1454. [Google Scholar] [CrossRef]
- Kubow, S.; Iskandar, M.M.; Melgar-Bermudez, E.; Sleno, L.; Sabally, K.; Azadi, B.; How, E.; Prakash, S.; Burgos, G.; Felde, T.Z. Effects of simulated human gastrointestinal digestion of two purple-fleshed potato cultivars on anthocyanin composition and cytotoxicity in colonic cancer and non-tumorigenic cells. Nutrients 2017, 9, 953. [Google Scholar] [CrossRef]
- Sadeghi Ekbatan, S.; Sleno, L.; Sabally, K.; Khairallah, J.; Azadi, B.; Rodes, L.; Prakash, S.; Donnelly, D.J.; Kubow, S. Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chem. 2016, 204, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Gumienna, M.; Lasik, M.; Czarnecki, Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Int. J. Food Sci. Nutr. 2011, 62, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Powers, S.; Monteagudo-Mera, A.; Kosik, O.; Lovegrove, A.; Shewry, P.; Charalampopoulos, D. Determination of the prebiotic activity of wheat arabinogalactan peptide (agp) using batch culture fermentation. Eur. J. Nutr. 2020, 59, 297–307. [Google Scholar] [CrossRef]
- Gaisawat, M.B.; MacPherson, C.W.; Tremblay, J.; Piano, A.; Iskandar, M.l.M.; Tompkins, T.A.; Kubow, S. Probiotic supplementation in a clostridium difficile-infected gastrointestinal model is associated with restoring metabolic function of microbiota. Microorganisms 2019, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Li, B. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Sci. Technol. Int. 2012, 18, 425–434. [Google Scholar] [CrossRef]
- Sun, L.; Chang, W.; Ma, Q.; Zhuang, Y. Purification of antioxidant peptides by high resolution mass spectrometry from simulated gastrointestinal digestion hydrolysates of alaska pollock (theragra chalcogramma) skin collagen. Mar. Drugs 2016, 14, 186. [Google Scholar] [CrossRef]
- Michaud, G. Use of Low Molecular Weight Collagen Hydrolysate for Preventing and/or Reducting Joint Pain, Lateral Meniscal Protusion and/or Improving Cartilage Abrasion Grade. U.S. Patent 20200078435, 12 March 2020. [Google Scholar]
- Walker, A.W.; Duncan, S.H.; McWilliam Leitch, E.C.; Child, M.W.; Flint, H.J. Ph and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 2005, 71, 3692–3700. [Google Scholar] [CrossRef]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- La Fata, G.; Rastall, R.A.; Lacroix, C.; Harmsen, H.J.M.; Mohajeri, M.H.; Weber, P.; Steinert, R.E. Recent development of prebiotic research-statement from an expert workshop. Nutrients 2017, 9, 1376. [Google Scholar] [CrossRef]
- Yamashiro, K.; Tanaka, R.; Urabe, T.; Ueno, Y.; Yamashiro, Y.; Nomoto, K.; Takahashi, T.; Tsuji, H.; Asahara, T.; Hattori, N. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE 2017, 12, e0171521. [Google Scholar] [CrossRef]
- Luu, M.; Pautz, S.; Kohl, V.; Singh, R.; Romero, R.; Lucas, S.; Hofmann, J.; Raifer, H.; Vachharajani, N.; Carrascosa, L.C.; et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 2019, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
Time (h) | Acetic Acid (mM) | Propionic Acid (mM) | Butyric Acid (mM) | Valeric Acid (mM) | Caproic Acid (mM) | Heptanoic Acid (mM) |
---|---|---|---|---|---|---|
Ascending colon | ||||||
0 | 12.43 ± 4.43 | 0.08 ± 0.07 | 0.05 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
8 | 24.83 ± 1.84 | 0.16 ± 0.05 | 0.05 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
16 | 25.17 ± 1.95 | 0.18 ± 0.04 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
24 | 21.48 ± 0.20 | 0.22 ± 0.06 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.00 ± 0.00 |
Transverse colon | ||||||
0 | 3.10 ± 0.67 | 1.34 ± 1.27 | 4.67 ± 3.21 | 1.56 ± 1.24 | 0.43 ± 0.43 | 0.00 ± 0.00 |
8 | 6.87 ± 2.68 | 1.52 ± 1.49 | 5.26 ± 2.65 | 1.74 ± 1.12 | 0.41 ± 0.38 | 0.00 ± 0.00 |
16 | 10.56 ± 6.86 | 1.74 ± 1.72 | 3.85 ± 2.35 | 1.42 ± 1.09 | 0.29 ± 0.03 | 0.00 ± 0.00 |
24 | 12.2 ± 10.56 | 1.29 ± 0.51 | 2.16 ± 1.14 | 0.85 ± 0.54 | 0.14 ± 0.12 | 0.00 ± 0.00 |
Descending colon | ||||||
0 | 4.50 ± 1.73 | 2.08 ± 1.90 | 4.56 ± 3.54 | 1.09 ± 1.60 | 0.46 ± 0.42 | 0.00 ± 0.00 |
8 | 5.56 ± 1.12 | 1.75 ± 1.51 | 4.70 ± 1.98 | 1.80 ± 0.99 | 0.41 ± 0.32 | 0.00 ± 0.00 |
16 | 3.83 ± 0.13 | 1.49 ± 1.44 | 3.83 ± 2.04 | 1.49 ± 0.98 | 0.40 ± 0.28 | 0.00 ± 0.00 |
24 | 6.80 ± 2.98 | 1.51 ± 1.43 | 4.63 ± 0.92 | 1.68 ± 0.69 | 0.38 ± 0.26 | 0.00 ± 0.00 |
Time (h) | Acetic Acid (mM) | Propionic Acid (mM) | Butyric Acid (mM) | Valeric Acid (mM) | Caproic Acid (mM) | Heptanoic Acid (mM) |
---|---|---|---|---|---|---|
Ascending colon | ||||||
0 | 3.96 ± 2.18 | 0.50 ± 0.47 | 2.92 ± 0.21 | 2.12 ± 0.05 | 1.80 ± 0.22 | 1.50 ± 0.08 |
8 | 8.55 ± 3.71 | 5.05 ± 0.43 | 4.90 ± 0.26 | 4.42 ± 0.21 * | 3.65 ± 0.10 | 2.87 ± 0.54 |
16 | 14.12 ± 2.73 | 7.59 ± 0.59 * | 6.97 ± 0.20 * | 5.91 ± 0.37 * | 4.44 ± 1.13 | 3.10 ± 0.36 |
24 | 14.20 ± 7.02 | 6.53 ± 1.71 * | 5.78 ± 1.21 * | 5.07 ± 0.70 * | 3.83 ± 0.08 | 3.12 ± 0.49 |
Transverse colon | ||||||
0 | 3.27 ± 2.13 | 0.16 ± 0.03 | 1.68 ± 0.38 | 1.29 ± 0.21 | 0.89 ± 0.03 | 0.78 ± 0.16 |
8 | 2.75 ± 0.41 | 0.82 ± 0.72 | 1.77 ± 0.50 | 1.52 ± 0.26 | 1.11 ± 0.47 | 0.76 ± 0.13 |
16 | 2.94 ± 1.46 | 1.06 ± 1.00 | 1.37 ± 0.18 | 1.09 ± 0.03 | 0.82 ± 0.23 | 0.57 ± 0.08 |
24 | 6.63 ± 2.54 | 1.52 ± 1.46 | 2.17 ± 0.18 | 1.84 ± 0.12 | 1.20 ± 0.37 | 0.91 ± 0.05 |
Descending colon | ||||||
0 | 2.43 ± 0.37 | 0.85 ± 0.68 | 2.23 ± 0.39 | 1.35 ± 0.17 | 0.83 ± 0.23 | 0.46 ± 0.10 |
8 | 4.34 ± 1.07 | 1.21 ± 0.92 | 3.70 ± 0.60 | 2.26 ± 0.40 | 1.4 ± 0.0.41 | 0.61 ± 0.21 |
16 | 3.84 ± 1.16 | 0.37 ± 0.08 | 3.72 ± 1.27 | 2.01 ± 0.05 | 1.34 ± 0.06 | 0.54 ± 0.11 |
24 | 3.39 ± 3.39 | 0.43 ± 0.12 | 3.95 ± 1.45 | 2.12 ± 0.12 | 1.32 ± 0.01 | 0.54 ± 0.11 |
Time (h) | Isobutyric Acid (mM) | Isovaleric Acid (mM) | Isocaproic Acid (mM) |
---|---|---|---|
Ascending colon | |||
0 | 4.27 ± 1.39 | 2.20 ± 0.09 | 1.56 ± 0.05 |
8 | 3.80 ± 0.22 | 3.20 ± 0.13 | 2.66 ± 0.55 |
16 | 5.19 ± 0.13 | 3.69 ± 0.34 * | 2.80 ± 0.18 |
24 | 4.65 ± 0.61 | 2.81 ± 0.17 + | 2.55 ± 0.47 |
Transverse colon | |||
0 | 2.67 ± 1.26 | 0.86 ± 0.04 | 0.64 ± 0.19 |
8 | 2.20 ± 0.10 | 0.98 ± 0.36 | 0.59 ± 0.10 |
16 | 2.20 ± 0.07 | 0.82 ± 0.10 | 0.52 ± 0.05 |
24 | 5.64 ± 0.87 | 1.09 ± 0.17 | 0.73 ± 0.02 |
Descending colon | |||
0 | 1.97 ± 0.09 | 1.09 ± 0.07 | 0.40 ± 0.13 |
8 | 2.35 ± 0.11 | 1.76 ± 0.17 | 0.45 ± 0.18 |
16 | 3.38 ± 0.73 | 1.73 ± 0.15 | 0.52 ± 0.17 |
24 | 4.17 ± 0.95 | 1.76 ± 0.24 | 0.46 ± 0.13 |
Time (h) | Isobutyric Acid (mM) | Isovaleric Acid (mM) | Isocaproic Acid (mM) |
---|---|---|---|
Ascending colon | |||
0 | 0.40 ± 0.05 | 0.04 ± 0.01 | 0.00 ± 0.00 |
8 | 0.23 ± 0.04 + | 0.04 ± 0.00 | 0.00 ± 0.00 |
16 | 0.26 ± 0.01 | 0.04 ± 0.00 | 0.01 ± 0.01 |
24 | 0.19 ± 0.01 * | 0.03 ± 0.01 | 0.01 ± 0.00 |
Transverse colon | |||
0 | 0.54 ± 0.17 | 0.35 ± 0.18 | 0.01 ± 0.01 |
8 | 0.55 ± 0.09 | 0.43 ± 0.22 | 0.01 ± 0.01 |
16 | 0.40 ± 0.23 | 0.35 ± 0.27 | 0.02 ± 0.01 |
24 | 0.32 ± 0.10 | 0.26 ± 0.16 | 0.02 ± 0.01 |
Descending colon | |||
0 | 0.79 ± 0.33 | 0.50 ± 0.26 | 0.01 ± 0.01 |
8 | 1.00 ± 0.53 | 0.60 ± 0.11 | 0.01 ± 0.01 |
16 | 0.60 ± 0.02 | 0.50 ± 0.17 | 0.02 ± 0.02 |
24 | 0.76 ± 0.23 | 0.60 ± 0.07 | 0.02 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larder, C.E.; Iskandar, M.M.; Kubow, S. Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates. Proceedings 2020, 61, 12. https://doi.org/10.3390/IECN2020-06998
Larder CE, Iskandar MM, Kubow S. Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates. Proceedings. 2020; 61(1):12. https://doi.org/10.3390/IECN2020-06998
Chicago/Turabian StyleLarder, Christina E., Michèle M. Iskandar, and Stan Kubow. 2020. "Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates" Proceedings 61, no. 1: 12. https://doi.org/10.3390/IECN2020-06998
APA StyleLarder, C. E., Iskandar, M. M., & Kubow, S. (2020). Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates. Proceedings, 61(1), 12. https://doi.org/10.3390/IECN2020-06998