Biochemistry, Pathology and Applications of Venoms

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Animal Venoms".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4355

Special Issue Editor


E-Mail Website
Guest Editor
School of Pharmacy, University of Reading, Reading RG6 6UB, UK
Interests: venom research; sequence, structure and functional analysis of venom proteins; development of diagnostic and improved therapeutic strategies for snakebites; the impact of venoms on the cardiovascular system; clinical management of snakebites in patients; policy development for snakebites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Venoms are complex biochemical mixtures produced by venomous animals such as snakes and invertebrate species, including spiders and scorpions. Venoms contain small peptides and enzymatic and non-enzymatic proteins, as well as several other organic and inorganic molecules that target specific physiological systems. Venoms mainly include neurotoxins, haemotoxins, cytotoxins, and myotoxins, which interfere with nerve signalling, blood clotting, and tissue integrity, respectively. They can cause pain, paralysis, tissue necrosis, respiratory failure, and coagulation disorders following envenoming in humans. Therefore, researching venoms is vital for developing better antivenoms and medical treatments. Beyond their toxicity, venoms have groundbreaking medical applications. For example, a cone snail venom has led to non-opioid painkillers, specific snake venom peptides have inspired blood pressure medications, and certain venom proteins are being studied for anticoagulants, stroke treatments, and cancer therapy. Additionally, venoms provide better insights into neurological diseases like epilepsy and Alzheimer’s disease. Therefore, the study of venoms bridges biochemistry, toxicology, and pharmacology and turns deadly venom toxins into therapeutic tools while improving treatments for envenoming. As venom research expands, it continues to yield life-saving drugs and new scientific breakthroughs, demonstrating the importance of understanding these powerful natural resources. Hence, I would like to invite researchers to share their novel findings on the biochemistry, pathology, and clinical applications of any venoms or their isolated toxins in this Special Issue. I look forward to receiving your articles.

Prof. Dr. Sakthivel Vaiyapuri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • venom
  • snakes
  • venomous invertebrates
  • venom toxins
  • clinical applications of venoms and toxins
  • biochemical composition of venoms
  • pathology of venoms
  • envenomation effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4713 KB  
Article
X Marks the Clot: Evolutionary and Clinical Implications of Divergences in Procoagulant Australian Elapid Snake Venoms
by Holly Morecroft, Christina N. Zdenek, Abhinandan Chowdhury, Nathan Dunstan, Chris Hay and Bryan G. Fry
Toxins 2025, 17(8), 417; https://doi.org/10.3390/toxins17080417 - 18 Aug 2025
Viewed by 4030
Abstract
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: [...] Read more.
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied. Here, thromboelastography was employed to comparatively evaluate venom coagulotoxicity across prey classes (amphibian, avian, rodent) and human plasma, using a taxonomically diverse selection of Australian snakes. The amphibian-specialist species Pseudechis porphyriacus (Red-Bellied Black Snake) exhibited significantly slower effects on rodent plasma, suggesting evolutionary refinement towards ectothermic prey. In contrast, venoms from dietary generalists retained broad efficacy across all prey types. Intriguingly, notable divergence was observed within Pseudonaja textilis (Eastern Brown Snake): Queensland populations of this species, and all other Pseudonaja (brown snake) species, formed rapid but weak clots in prey and human plasma. However, the South Australian populations of P. textilis produced strong, stable clots across prey plasmas and in human plasma. This is a trait shared with Oxyuranus species (taipans) and therefore represents an evolutionary reversion towards the prothrombinase phenotype present in the Oxyuranus and Pseudonaja last common ancestor. Clinically, this distinction has implications for the pathophysiology of human envenomation, potentially influencing clinical progression, including variations in clinical coagulopathy tests, and antivenom effectiveness. Thus, this study provides critical insight into the ecological selection pressures shaping venom function, highlights intraspecific venom variation linked to geographic and phylogenetic divergence, and underscores the importance of prey-focused research for both evolutionary toxinology and improved clinical management of snakebite. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 726 KB  
Review
Anticancer Activity of Snake Venom Against Breast Cancer: A Scoping Review
by Eun-Jin Kim, Jang-Kyung Park, Soo-Hyun Sung and Hyun-Kyung Sung
Toxins 2025, 17(10), 477; https://doi.org/10.3390/toxins17100477 (registering DOI) - 25 Sep 2025
Abstract
Breast cancer remains a leading cause of cancer-related mortality worldwide, necessitating innovative therapeutic approaches. This scoping review summarizes experimental evidence on the anticancer activity of snake venom and its bioactive components against breast cancer, drawing from a variety of in vitro and in [...] Read more.
Breast cancer remains a leading cause of cancer-related mortality worldwide, necessitating innovative therapeutic approaches. This scoping review summarizes experimental evidence on the anticancer activity of snake venom and its bioactive components against breast cancer, drawing from a variety of in vitro and in vivo studies. Aimed at critically evaluating the therapeutic potential and underlying mechanisms, this review consolidates findings on venoms from multiple snake species, including both crude preparations and purified proteins or peptides, revealing a diversity of mechanisms of action. Reported effects include induction of apoptosis, generation of reactive oxygen species, disruption of cell membrane integrity, inhibition of cell proliferation and metastasis, and modulation of oncogenic signaling pathways. In vivo findings further indicate tumor growth inhibition and, in some cases, enhanced efficacy when venom-based agents are combined with nanoparticle delivery systems or conventional anticancer drugs. However, a significant proportion of evidence is limited to in vitro studies, with substantial heterogeneity in venom sources, extraction methods, dosages, and cancer models, which constrains generalizability. There is also a lack of systematic data on long-term toxicity, immunogenicity, off-target effects, pharmacokinetics, and formulation challenges. Taken together, these findings highlight snake venom-derived compounds as promising multi-targeted anticancer agents but underscore the urgent need for standardized formulations, rigorous preclinical safety assessments, and translational research to bridge the gap to clinical application. Future investigations should aim to isolate novel venom-derived compounds, refine delivery strategies, and undertake rigorous preclinical safety and pharmacokinetic studies—ultimately moving toward early-phase clinical evaluation to bridge the translational gap and assess the therapeutic potential of these agents. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

Back to TopTop