Special Issue "Reviews and Advances in Materials Processing"

A special issue of Technologies (ISSN 2227-7080). This special issue belongs to the section "Innovations in Materials Processing".

Deadline for manuscript submissions: 29 February 2020.

Special Issue Editor

Assoc. Prof. Manoj Gupta
E-Mail Website
Guest Editor
Materials Group, Department of Mechanical Engineering, NUS, 9 Engineering Drive 1, 117576 Singapore
Interests: processing; characterization; lightweight materials; nanocomposites
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Materials processing is the first, and a key, step in proper utilization of the composition of a given material and to realize the microstructural features that are intended to attain desired property levels for a given application. Both primary and secondary processing methods are equally important in tailoring the end properties of materials. In view of the crucial importance of the processing of materials, this Special Issue is intending to cover all innovative aspects of primary processing (solid phase, liquid phase, two phase, 3D printing, rapid solidification, etc.) and secondary processing (such as variations in extrusion, forging, rolling, equichannel angular extrusion, etc.) of materials (polymers/ metal/ceramic-based, including their composites). Desirable attributes expected for submission will be processing–microstructure–property interrelations.

Prof. Manoj Gupta
Guest Editor

Welcome to leave your comments in the Discussion Group for this Special Issue.

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Technologies is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Primary Processing
  • Secondary Processing
  • Metals
  • Polymers
  • Ceramics
  • Composites

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Effects of the Infill Density on the Mechanical Properties of Nylon Specimens Made by Filament Fused Fabrication
Technologies 2019, 7(3), 57; https://doi.org/10.3390/technologies7030057 - 16 Aug 2019
Abstract
Additive manufacturing of polymer products over the past decade has become widespread in various areas of industry. Using the fused filament fabrication (FFF) method, one of the most technologically simple methods of additive manufacturing, it is possible to produce parts from a large [...] Read more.
Additive manufacturing of polymer products over the past decade has become widespread in various areas of industry. Using the fused filament fabrication (FFF) method, one of the most technologically simple methods of additive manufacturing, it is possible to produce parts from a large number of different materials, including wear-resistant nylon. The novelty of the work is properties investigation of ±45° filling configuration with different filling degree for nylon, as well as calculating the effect of infill on the strength characteristics, excluding the shell. This article reflects the process of manufacturing samples from nylon using FFF technology with various internal topologies, as well as tensile tests. The analysis of the obtained results is performed and the relationship between the structure of the sample and the limit of its strength is established. To calculate real filling degree and the effect of internal filling on the strength characteristics of the specimen, it is proposed to use a method based on the geometric and mass parameters. The FFF method is promising for developing methods for producing a composite material. The results of this article can be useful in choosing the necessary manufacturing parameters. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Figure 1

Open AccessArticle
Analysis, Optimization, and Characterization of Magnetic Photonic Crystal Structures and Thin-Film Material Layers
Technologies 2019, 7(3), 49; https://doi.org/10.3390/technologies7030049 - 05 Jul 2019
Abstract
The development of magnetic photonic crystals (MPC) has been a rapidly evolving research area since the late 1990s. Magneto-optic (MO) materials and the techniques for their characterization have also continually undergone functional and property-related improvements. MPC optimization is a feature-rich Windows software application [...] Read more.
The development of magnetic photonic crystals (MPC) has been a rapidly evolving research area since the late 1990s. Magneto-optic (MO) materials and the techniques for their characterization have also continually undergone functional and property-related improvements. MPC optimization is a feature-rich Windows software application designed to enable researchers to analyze the optical and magneto-optical spectral properties of multilayers containing gyrotropic constituents. We report on a set of computational algorithms which aim to optimize the design and the optical or magneto-optical spectral analysis of 1D MPC, together with a Windows software implementation. Relevant material property datasets (e.g., the spectral dispersion data for the refractive index, absorption, and gyration) of several important optical and MO materials are included, enabling easy reproduction of the previously published results from the field of MPC-based Faraday rotator development, and an effective demonstration-quality introduction of future users to the multiple features of this package. We also report on the methods and algorithms used to obtain the absorption coefficient spectral dispersion datasets for new materials, where the film thickness, transmission spectrum, and refractive index dispersion function are known. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Figure 1

Open AccessArticle
Process Development of CO2-Assisted Polymer Compression for High Productivity: Improving Equipment and the Challenge of Numbering-Up
Technologies 2019, 7(2), 39; https://doi.org/10.3390/technologies7020039 - 08 May 2019
Abstract
The CO2-assisted polymer compression method is used herein to prepare porous polymer materials by bonding laminated polymer fiber sheets using a piston in the presence of CO2. In this work, the CO2 flow line connections were moved from [...] Read more.
The CO2-assisted polymer compression method is used herein to prepare porous polymer materials by bonding laminated polymer fiber sheets using a piston in the presence of CO2. In this work, the CO2 flow line connections were moved from the pressure vessel to the piston to increase productivity, which makes the pressure vessel free-moving and the processing time of sample introduction and removal seemingly zero. In addition, a numbering-up method suitable for CO2-assisted polymer compression is proposed and verified based on the variability of the products. The variability of the product was evaluated using porosity, which is one of the most important properties of a porous material. It is found that the CO2 exhaust process, specific to this method, that uses high-pressure CO2, causes product variation, which can be successfully suppressed by optimizing the CO2 exhaust process. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Graphical abstract

Open AccessArticle
Microwave Assisted Green Synthesis of Silver Nanoparticles Using Mulberry Leaves Extract and Silver Nitrate Solution
Technologies 2019, 7(1), 7; https://doi.org/10.3390/technologies7010007 - 05 Jan 2019
Abstract
In this work, silver nanoparticles (AgNPs) were synthesized quickly and in an eco-friendly manner using the extract of Mulberry leaves and aqueous solution of silver nitrate without any toxic chemicals (Yuet et al. Int. J. Nanomed. 2012, 7, 4263–4267; Krishnakuma and [...] Read more.
In this work, silver nanoparticles (AgNPs) were synthesized quickly and in an eco-friendly manner using the extract of Mulberry leaves and aqueous solution of silver nitrate without any toxic chemicals (Yuet et al. Int. J. Nanomed. 2012, 7, 4263–4267; Krishnakuma and Adavallan. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 025018). The Mulberry leaves extract functions as both a stabilizing and reducing agent. The UV-Vis spectroscopy shows a peak maximum at 430 nm. The transmission electron microscopy (TEM) image illustrated of synthesized AgNPs were nearly spherical-shaped particles whose sizes range from 15 to 20 nm. The TEM image of Nano Silver solution sample synthesized by the microwave assisted method shows nearly spherical particles, with an average particle size estimated at 10 nm. The absorption UV-vis spectrum of silver nanoparticles synthesized by the microwave assisted method (AgNPsmw) shows a sharp absorption band around 415 nm. The UV-Vis spectrum of AgNPsmw after two months of storage shows negligible peak changes of silver nanoparticles. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Figure 1

Open AccessArticle
On Adaptive Control for Electrical Discharge Machining Using Vibroacoustic Emission
Technologies 2018, 6(4), 96; https://doi.org/10.3390/technologies6040096 - 24 Oct 2018
Cited by 1
Abstract
The article is related to the research of the parameters of vibroacoustic emission for development of the monitoring and adaptive control system for electrical discharge machining. The classical control system based on a response of electrical parameters does not give an adequate data [...] Read more.
The article is related to the research of the parameters of vibroacoustic emission for development of the monitoring and adaptive control system for electrical discharge machining. The classical control system based on a response of electrical parameters does not give an adequate data in the cases of a new class of materials processing as conductive ceramics reinforced by conductive nano additives and carbon nanotubes and whiskers. The idle pulses, which are working on the destruction of the erosion products in the gap, count as working pulses. The application of the monitoring and control tools based on vibroacoustic emission gives adequate data about conditions in the working zone. The developed system is available to count only impulses involved in working on the destruction of the workpiece. The experiments were conducted on the samples of materials with a low melting point as austenitic steel and aluminum alloy, and hard alloys. The records of vibroacoustic signals were analyzed for detection of the monitoring and adaptive control criteria. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Roles of Cryogenic Cooling in Turning of Superalloys, Ferrous Metals, and Viscoelastic Polymers
Technologies 2019, 7(3), 63; https://doi.org/10.3390/technologies7030063 - 05 Sep 2019
Abstract
Cryogenic machining is a relatively new technique in machining. This concept was applied on various machining processes such as turning, milling, drilling etc. Cryogenic turning technique is generally applied on three major groups of workpiece materials—superalloys, ferrous metals, and viscoelastic polymers/elastomers. The roles [...] Read more.
Cryogenic machining is a relatively new technique in machining. This concept was applied on various machining processes such as turning, milling, drilling etc. Cryogenic turning technique is generally applied on three major groups of workpiece materials—superalloys, ferrous metals, and viscoelastic polymers/elastomers. The roles of cryogen in machining different materials are unique and are summarised in this review article. Finally, the challenges in using cryogenic machining in industries are also highlighted. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Figure 1

Open AccessReview
On Electrical Discharge Machining of Non-Conductive Ceramics: A Review
Technologies 2019, 7(3), 55; https://doi.org/10.3390/technologies7030055 - 08 Aug 2019
Abstract
The inability of ceramic and nanoceramic processing without expensive diamond tools and with a high-material-removal rate hampers the scope of its potential applications and does not allow humanity to make a full shift to the sixth technological paradigm associated with Kuhn scientific revolutions [...] Read more.
The inability of ceramic and nanoceramic processing without expensive diamond tools and with a high-material-removal rate hampers the scope of its potential applications and does not allow humanity to make a full shift to the sixth technological paradigm associated with Kuhn scientific revolutions and Kondratieff’s waves and restrains the growth of the economy. The authors completed a review on the research state of ceramic and nanoceramic processing by electrical discharge machining, which is possibly solved by two principal approaches associated with the usage of standard commercially available machine tools. The first approach is related to the introduction of expensive secondary phase; the second approach proposes initiate processing by adding auxiliary electrodes in the form of coating, suspension, aerosol, or 3D-printed layer based on the components of silver, copper, or graphite in combination with an improved dielectric oil environment by introducing graphite or carbon nanoparticles, which is hugely relevant today. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Figure 1

Back to TopTop