Special Issue "Hamiltonian and Overdamped Complex Systems, Symmetry of Phase-Space Occupancy"

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Physics and Symmetry/Asymmetry".

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editors

Prof. Antonio Rodríguez
E-Mail Website
Guest Editor
Departamento de Matemática Aplicada a la Ingeniería Aeroespacial, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros s/n, 28040 Madrid, Spain
Prof. Dr. Alessandro Pluchino
E-Mail Website
Guest Editor
Dipartimento di Fisica e Astronomia dell'Università di Catania e INFN Sezione di Catania, Via S. Sofia, 64, 95123 Catania CT, Italy
Interests: complex systems; statistical mechanics; complex networks; agent-based models
Special Issues and Collections in MDPI journals
Prof. Dr. Ugur Tirnakli
E-Mail Website
Guest Editor
Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey
Interests: statistical mechanics; nonlinear dynamics; complex systems

Special Issue Information

Dear Colleagues,

Complexity naturally arises in nonlinear physics and elsewhere, for instance through processes of successive bifurcations generating complex spatiotemporal patterns, or in nontrivial configurations of the phase space of chaotic Hamiltonian systems possibly involving long-range interactions, where one typically can find a mixture of chaotic seas and regions with regular motion that can lead to statistical distributions with power-law and scale-free tails.

The same can occur in systems such as complex plasmas, superconductors or colloidal systems, which can be described by dissipative approaches including repulsive particles whose equation of motion, in the overdamped limit, takes the form of a first-order differential equations, where the velocity of the particles is proportional to the force over them. Additionally, in this case, for various kinds of repulsive potentials, anomalous distributions of the local density and of the velocities can be found, both analytically and numerically.

The phase space of strongly chaotic Hamiltonian systems presents translational symmetry, as expected within Boltzmann-Gibbs statistical mechanics, consistently exhibiting the celebrated exponential distribution of energies and the Maxwellian distribution of momenta. In contrast, alternative, anomalous, distributions arise whenever this basic symmetry is broken. Such is frequently the case when weak chaos is present, for instance if long-range interactions are involved, or when memory effects play an important role, overdamped complex systems constituting a paradigmatic example of this situation. The study of the symmetry of the phase-space occupancy is thus one of the crucial features to characterize the thermostatistical properties of many complex systems. 

The aim of this Special Issue is to stimulate further investigations along these directions, particularly in connection with frameworks such as q-generalized statistical mechanics, superstatistics, stochastic thermodynamics, and other modern statistical mechanical approaches, in both classical and quantum systems where nonlocal correlations are relevant.

We are soliciting contributions (both research and review articles) covering a broad range of topics related to complexity and symmetries in space and/or time, at micro-, meso-, and macroscopic scales, possibly revealing either grounding aspects or their applications.

Prof. Antonio Rodríguez
Prof. Dr. Alessandro Pluchino
Prof. Dr. Ugur Tirnakli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:


The Superconducting Critical Temperature
Symmetry 2021, 13(5), 911; https://doi.org/10.3390/sym13050911 - 20 May 2021
Viewed by 400
Two principles govern the critical temperature for superconducting transitions: (1) intrinsic strength of the pair coupling and (2) the effect of the many-body environments on the efficiency of that coupling. Most discussions take into account only the former, but we argue that the [...] Read more.
Two principles govern the critical temperature for superconducting transitions: (1) intrinsic strength of the pair coupling and (2) the effect of the many-body environments on the efficiency of that coupling. Most discussions take into account only the former, but we argue that the properties of unconventional superconductors are governed more often by the latter, through dynamical symmetry relating to normal and superconducting states. Differentiating these effects is essential to charting a path to the highest-temperature superconductors. Full article
Show Figures

Figure 1

Back to TopTop