# Nonlinear Fokker-Planck Equation for an Overdamped System with Drag Depending on Direction

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Non-Linear Fokker–Planck Equation with Power-Law Diffusion

## 3. Direction-Dependent Drag Forces and Non-Linear Fokker–Planck Equations

## 4. Stationary Solutions and $\mathit{H}$-Theorem for Over-Damped Systems with Position-Dependent Drag forces

#### 4.1. Stationary Solutions

#### 4.2. H-Theorem

## 5. An Example with a Time-Dependent Solution Having Asymmetric $\mathit{q}$-Gaussian Form

## 6. Exact Solutions for Non-Linear Diffusion with General $\mathit{q}$-Values

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Franck, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Andrade, J.S., Jr.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of Overdamped Motion of Interacting Particles. Phys. Rev. Lett.
**2010**, 105, 260601. [Google Scholar] [CrossRef][Green Version] - Ribeiro, M.S.; Nobre, F.D.; Curado, E.M.F. Time evolution of interacting vortices under overdamped motion. Phys. Rev. E
**2012**, 85, 021146. [Google Scholar] [CrossRef][Green Version] - Combe, G.; Richefeu, V.; Stasiak, M.; Atman, A.P.F. Experimental validation of a nonextensive scaling law in confined granular media. Phys. Rev. Lett.
**2015**, 115, 238301. [Google Scholar] [CrossRef][Green Version] - Shiino, M. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Phys. Rev. E
**2003**, 67, 056118. [Google Scholar] [CrossRef] [PubMed][Green Version] - Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E
**2003**, 68, 036108. [Google Scholar] [CrossRef] [PubMed][Green Version] - Curado, E.M.F.; Souza, A.M.C.; Nobre, F.D.; Andrade, R.F.S. Carnot cycle for interacting particles in the absence of thermal noise. Phys. Rev. E
**2014**, 89, 022117. [Google Scholar] [CrossRef] [PubMed][Green Version] - Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A
**1995**, 222, 347–354. [Google Scholar] [CrossRef] - Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E
**1996**, 54, R2197–R2200. [Google Scholar] [CrossRef][Green Version] - Frank, T.D.; Friedrich, R. Estimating the nonextensivity of systems from experimental data: A nonlinear diffusion equation approach. Physica A
**2005**, 347, 65–76. [Google Scholar] [CrossRef] - Ubriaco, M.R. A simple mathematical model for anomalous diffusion via Fisher’s information theory. Phys. Lett. A
**2009**, 373, 4017–4021. [Google Scholar] [CrossRef][Green Version] - Mendes, G.A.; Ribeiro, M.S.; Mendes, R.S.; Lenzi, E.K.; Nobre, F.D. Nonlinear Kramers equation associated with nonextensive statistical mechanics. Phys. Rev. E
**2015**, 91, 052106. [Google Scholar] [CrossRef] [PubMed][Green Version] - Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B
**2008**, 62, 179–208. [Google Scholar] [CrossRef][Green Version] - Wedemann, R.S.; Plastino, A.R. A nonlinear Fokker-Planck description of continuous neural network dynamics. In Artificial Neural Networks and Machine Learning—ICANN 2019, Lecture Notes in Computer Science; Tetko, I., Kůrková, V., Karpov, P., Theis, F., Eds.; Springer: Cham, Switzerland, 2019; Volume 11727, pp. 43–56. [Google Scholar]
- Schwämmle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H theorem from nonlinear Fokker-Planck equations. Phys. Rev. E
**2007**, 76, 041123. [Google Scholar] [CrossRef][Green Version] - Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics, Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Beck, C. Generalised information and entropy measures in physics. Contemp. Phys.
**2009**, 50, 495–510. [Google Scholar] [CrossRef] - Naudts, J. Generalised Thermostatistics; Springer: London, UK, 2011. [Google Scholar]
- Pluchino, A.; Rapisarda, A. Metastability in the Hamiltonian mean field model and Kuramoto model. Physica A
**2006**, 365, 184–189. [Google Scholar] [CrossRef][Green Version] - Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E
**2011**, 84, 021121. [Google Scholar] [CrossRef] [PubMed][Green Version] - Livadiotis, G.; McComas, D.J. Understanding Kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev.
**2013**, 175, 183–214. [Google Scholar] [CrossRef][Green Version] - Ruiz, G.; Tirnakli, U.; Borges, E.P.; Tsallis, C. Statistical characterization of discrete conservative systems: The web map. Phys. Rev. E
**2017**, 96, 042158. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rodríguez, A.; Nobre, F.D.; Tsallis, C. d-Dimensional classical Heisenberg model with arbitrarily-ranged interactions: Lyapunov exponents and distributions of momenta and energies. Entropy
**2019**, 21, 31. [Google Scholar] [CrossRef][Green Version] - Conroy, J.M.; Miller, H.G. Determining the Tsallis parameter via maximum entropy. Phys. Rev. E
**2015**, 91, 052112. [Google Scholar] [CrossRef] - Asgarani, S. Families of Fokker-Planck equations and the associated entropic form for a distinct steady-state probability distribution with a known external force field. Phys. Rev. E
**2015**, 91, 022104. [Google Scholar] [CrossRef] - Nobre, F.D.; Curado, E.M.F.; Souza, A.M.C.; Andrade, R.F.S. Consistent thermodynamic framework for interacting particles by neglecting thermal noise. Phys. Rev. E
**2015**, 91, 022135. [Google Scholar] [CrossRef][Green Version] - Ribeiro, M.S.; Nobre, F.D. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise. Phys. Rev. E
**2016**, 94, 022120. [Google Scholar] [CrossRef] [PubMed] - Czégel, D.; Balogh, S.; Pollner, P.; Palla, G. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations. Sci. Rep.
**2018**, 8, 1883. [Google Scholar] [CrossRef] [PubMed] - Lenzi, E.K.; Lenzi, M.K.; Ribeiro, H.V.; Evangelista, L.R. Extensions and solutions for nonlinear diffusion equations and random walks. Proc. R. Soc. A
**2019**, 475, 20190432. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fuentes, J.; López, J.L.; Obregón, O. Generalized Fokker-Planck equations derived from nonextensive entropies asymptotically equivalent to Boltzmann-Gibbs. Phys. Rev. E
**2020**, 102, 012118. [Google Scholar] [CrossRef] [PubMed] - Santos, L. Microscopic dynamics of nonlinear Fokker-Planck equations. Phys. Rev. E
**2021**, 103, 032106. [Google Scholar] [CrossRef] [PubMed] - Weymouth, A.J.; Meuer, D.; Mutombo, P.; Wutscher, T.; Ondracek, M.; Jelinek, P.; Giessibl, F.J. Atomic Structure Affects the Directional Dependence of Friction. Phys. Rev. Lett.
**2013**, 111, 126103. [Google Scholar] [CrossRef] - Tramsen, H.T.; Gorb, S.N.; Zhang, H.; Manoonpong, P.; Dai, Z.; Heepe, L. Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface. J. R. Soc. Interface
**2018**, 15, 20170629. [Google Scholar] [CrossRef][Green Version] - Plastino, A.R.; Wedemann, R.S.; Curado, E.M.F.; Nobre, F.D.; Tsallis, C. Nonlinear drag forces and the thermostatistics of overdamped motion. Phys. Rev. E
**2018**, 98, 012129. [Google Scholar] [CrossRef] [PubMed] - Wedemann, R.S.; Plastino, A.R. Thermostatistics of overdamped motion with anisotropic drag forces. Eur. Phys. J. Spec. Top.
**2020**, 229, 809–818. [Google Scholar] [CrossRef]

**Figure 1.**Time evolution of the asymmetric, q-Gaussian solution (30) to the non-linear diffusion Equation (27). The density $\rho (x,t)$ is depicted as a function of x for different values of $t/\tau $. The solution corresponds to $D=1$ and $q=0$, and to initial conditions given by $A\left(0\right)=1$, ${\beta}_{1}\left(0\right)=1$, ${\beta}_{2}\left(0\right)=1/4$. The density $\rho $ is measured in units of $A\left(0\right)$, and the coordinate x in units of ${\beta}_{1}{\left(0\right)}^{-1/2}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Plastino, A.R.; Wedemann, R.S.; Tsallis, C.
Nonlinear Fokker-Planck Equation for an Overdamped System with Drag Depending on Direction. *Symmetry* **2021**, *13*, 1621.
https://doi.org/10.3390/sym13091621

**AMA Style**

Plastino AR, Wedemann RS, Tsallis C.
Nonlinear Fokker-Planck Equation for an Overdamped System with Drag Depending on Direction. *Symmetry*. 2021; 13(9):1621.
https://doi.org/10.3390/sym13091621

**Chicago/Turabian Style**

Plastino, Angel Ricardo, Roseli S. Wedemann, and Constantino Tsallis.
2021. "Nonlinear Fokker-Planck Equation for an Overdamped System with Drag Depending on Direction" *Symmetry* 13, no. 9: 1621.
https://doi.org/10.3390/sym13091621