Special Issue "Biodiversity Conservation and Sustainable Urban Development"

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Urban and Rural Development".

Deadline for manuscript submissions: closed (31 December 2019).

Special Issue Editors

Prof. Dr. Ingo Kowarik
E-Mail Website
Guest Editor
Technical University of Berlin, Department of Ecology, Berlin, Germany
Interests: urban ecology; biodiversity conservation; biological invasions
Prof. Dr. Leonie K. Fischer
E-Mail Website
Guest Editor
Institute of Landscape Planning and Ecology, University of Stuttgart, Stuttgart, Germany
Interests: urban ecology; biodiversity valuation; human–nature interactions
Dr. Dave Kendal
E-Mail Website
Guest Editor
University of Tasmania, Australia
Interests: human–nature relationships; urban nature; conservation; threatened species

Special Issue Information

Dear Colleagues,

Urbanization is a global trend gaining increasing importance for the future of biodiversity. While urban growth threatens biodiversity, cities can also harbour endangered plant and animal species. Understanding the role of urban environments for species of conservation concern and integrating biodiversity into sustainable cities are timely challenges for research and urban planning. We invite studies that aim to increase our understanding of the urban contribution to biodiversity conservation or that envision pathways towards developing or managing biodiverse urban environments.

Contributions to this Special Issue are expected to address:

  • The role of urban environments for species, communities, or ecosystems of conservation concern in relation to urbanization, urban land uses, management, and other types of human interference.
  • Mechanisms that drive urban biodiversity loss or underpin the survival of species of conservation concern in urban environments.
  • The intersection between biodiversity conservation and the valuation and use of urban nature by urban people.
  • The integration of biodiversity conservation into sustainable urban development, particularly into urban planning, environmental education and the urban green infrastructure, and into the development, management, or restoration of urban ecosystems.

Prof. Dr. Ingo Kowarik
Prof. Dr. Leonie K. Fischer
Dr. Dave Kendal
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biodiversity conservation
  • Biodiverse cities
  • Green cities
  • Greenspace management
  • Urban ecology
  • Urban green Infrastructure
  • Urban planning

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle
Squeezed from All Sides: Urbanization, Invasive Species, and Climate Change Threaten Riparian Forest Buffers
Sustainability 2020, 12(4), 1448; https://doi.org/10.3390/su12041448 (registering DOI) - 15 Feb 2020
Abstract
Streamside forests of urbanizing coastal regions lie at the nexus of global changes: rising sea levels, increasing storm surge, expanding urban development, and invasive species. To understand how these combined stressors affect forest conditions, we identified forest patches adjacent to urban land, analyzed [...] Read more.
Streamside forests of urbanizing coastal regions lie at the nexus of global changes: rising sea levels, increasing storm surge, expanding urban development, and invasive species. To understand how these combined stressors affect forest conditions, we identified forest patches adjacent to urban land, analyzed adjacent land cover, modeled forest inundation, and sampled 100 sites across the Chesapeake Bay and Delaware Bay watersheds. We found that the majority of forest patches are adjacent to urban land and projected flooding will affect 8–19% of regional forested land. We observed non-native invasive plants in 94% of forest plots. Trees were predominantly native, but over half of shrub stems were invasive species and more than 80% of plots contained invasive woody vines. Disturbance of human origin was correlated with abundance of invasive trees. Signs of deer activity were common. Richness and number of growth forms of invasive plants were related to adjacent agricultural land cover. These data reveal that streamside forests are impacted by the interacting stressors of urbanization, climate change, and invasive species spread. Our results emphasize the importance of protection and restoration of forests in urban regions and point to the need for a social-ecological systems approach to improve their condition. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Graphical abstract

Open AccessArticle
The Function of A Set-Aside Railway Bridge in Connecting Urban Habitats for Animals: A Case Study
Sustainability 2020, 12(3), 1194; https://doi.org/10.3390/su12031194 - 07 Feb 2020
Abstract
As elements of green infrastructure, railway embankments are important corridors in urban environments connecting otherwise isolated habitat fragments. They are interrupted when railways cross major roads. It is not known whether dispersing animals use railway bridges to cross roads. We examined the function [...] Read more.
As elements of green infrastructure, railway embankments are important corridors in urban environments connecting otherwise isolated habitat fragments. They are interrupted when railways cross major roads. It is not known whether dispersing animals use railway bridges to cross roads. We examined the function of a set-aside iron-steel railway bridge crossing a 12 m wide road with high traffic density in Basel (Switzerland) for dispersing animals. We installed drift fences with traps on a single-track, 32 m long and 6 m wide railway bridge with a simple gravel bed, and collected animals daily for 9 months. We captured more than 1200 animals crossing the bridge: small mammals, reptiles and amphibians as well as numerous invertebrates including snails, woodlice, spiders, harvestmen, millipedes, carabids, rove beetles and ants. For some animals it is likely that the gravel bed, at least temporarily, serves as a habitat. Many animals, however, were apparently dispersing, using the bridge to cross the busy road. We found season- and daytime-dependent differences in the frequency the bridge was used. Our findings indicate an important function of a set-aside railway bridges for connecting urban habitats. As most animal dispersal was recorded during the night, railway bridges with no (or little) traffic during the night may also contribute to animal dispersal. As important elements of green infrastructure, set-aside railway bridges should be considered in future urban planning. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management
Sustainability 2020, 12(1), 293; https://doi.org/10.3390/su12010293 - 30 Dec 2019
Abstract
Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, [...] Read more.
Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Effect of Urbanization on Vegetation in Riparian Area: Plant Communities in Artificial and Semi-Natural Habitats
Sustainability 2020, 12(1), 204; https://doi.org/10.3390/su12010204 - 25 Dec 2019
Abstract
Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the [...] Read more.
Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the impact of urbanization on vegetation communities between artificial and semi-natural habitats within two rivers with different levels of development. We compared species richness, types of vegetation, and composition patterns of the plants in our study. In artificial habitats, the sites with relatively high levels of urbanization had the highest species richness, while in semi-natural habitats, the highest species richness was recorded in the less urbanized sites. Furthermore, every component of urbanization that contributed to the variation of species richness was examined in the current study. In artificial habitats, the proportion of impervious surface was the strongest predictor of the variation in species richness and was associated with the richness of alien, native, and riparian species. In semi-natural habitats, most of the richness of alien and native species were associated with the distance to the city center, and the number of riparian and ruderal species was significantly related to the proportion of impervious surface. Moreover, we found that a high level of urbanization was always associated with a large abundance of alien and ruderal species in both artificial and in semi-natural habitats. We recommend the methods of pair comparison of multiple rivers to analyze the impact of urbanization on plant species in riparian areas and have suggested various management actions for maintaining biodiversity and sustainability in riparian ecosystems. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens
Sustainability 2020, 12(1), 95; https://doi.org/10.3390/su12010095 - 21 Dec 2019
Abstract
Private gardens make up large parts of urban green space. In contrast to public green spaces, planning and management is usually uncoordinated and independent of municipal planning and management strategies. Therefore, the potential for private gardens to provide ecosystem services and habitat and [...] Read more.
Private gardens make up large parts of urban green space. In contrast to public green spaces, planning and management is usually uncoordinated and independent of municipal planning and management strategies. Therefore, the potential for private gardens to provide ecosystem services and habitat and to function as corridors for wildlife is not fully utilized. In order to improve public knowledge on gardens, as well as provide individual gardeners with information on what they can contribute to enhance ecosystem services provision, we developed a GIS-based web application for the city of Braunschweig (Germany): the ‘GartenApp’ (garden app). Users of the app have to outline their garden on a web map and provide information on biodiversity related features and management practices. Finally, they are asked about observations of well recognizable species in their gardens. As an output, the gardeners are provided with an estimate of the ecosystem services their garden provides, with an evaluation of the biodiversity friendliness, customized advice on improving ecosystem services provision, and results from connectivity models that show gardeners the role of their garden in the green network of the city. In this paper, we describe the app architecture and show the first results from its application. We finish with a discussion on the potential of GIS-based web applications for urban sustainability, planning and conservation. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Emerging Urban Forests: Opportunities for Promoting the Wild Side of the Urban Green Infrastructure
Sustainability 2019, 11(22), 6318; https://doi.org/10.3390/su11226318 - 11 Nov 2019
Abstract
Many cities aim to increase urban forest cover to benefit residents through the provision of ecosystem services and to promote biodiversity. As a complement to traditional forest plantings, we address opportunities associated with “emerging urban forests” (i.e., spontaneously developing forests in cities) for [...] Read more.
Many cities aim to increase urban forest cover to benefit residents through the provision of ecosystem services and to promote biodiversity. As a complement to traditional forest plantings, we address opportunities associated with “emerging urban forests” (i.e., spontaneously developing forests in cities) for urban biodiversity conservation. We quantified the area of successional forests and analyzed the species richness of native and alien plants and of invertebrates (carabid beetles, spiders) in emerging forests dominated by alien or native trees, including Robinia pseudoacacia, Acer platanoides, and Betula pendula. Emerging urban forests were revealed as shared habitats of native and alien species. Native species richness was not profoundly affected by the alien (co-)dominance of the canopy. Instead, native and alien plant species richnesses were positively related. Numbers of endangered plants and invertebrates did not differ between native- and alien-dominated forest patches. Patterns of tree regeneration indicate different successional trajectories for novel forest types. We conclude that these forests (i) provide habitats for native and alien species, including some endangered species, (ii) allow city dwellers to experience wild urban nature, and (iii) support arguments for adapting forests to dynamic urban environments. Integrating emerging urban forests into the urban green infrastructure is a promising pathway to sustainable cities and can complement traditional restoration or greening approaches. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits
Sustainability 2019, 11(19), 5310; https://doi.org/10.3390/su11195310 - 26 Sep 2019
Abstract
Selecting suitable species to enhance ecological functions is crucial for improvements in the planning and design of roof greening and in maintaining sustainable urban development, especially in rapidly urbanized areas. Assisted by field trips to enhance studies, the present project assessed the ecological [...] Read more.
Selecting suitable species to enhance ecological functions is crucial for improvements in the planning and design of roof greening and in maintaining sustainable urban development, especially in rapidly urbanized areas. Assisted by field trips to enhance studies, the present project assessed the ecological functions of 207 plant species used for roof greening in Beijing based on their key functional traits. The results indicate that regulating, cultural, supplying, and supporting functions differed significantly among species and families in the study area. Rosaceae species have higher levels of overall ecological functions than other species, and a large number of Compositae species have lower-level functions. Compared to other families, Araliaceae and Nyctaginaceae have higher mean values of cultural and supporting functions and the highest mean overall function value of 37. Ulmaceae, Sapindaceae, Ginkgoaceae, Berberidaceae, and Aceraceae have higher mean regulating, cultural, supporting, and overall function values. Amaranthaceae, Umbelliferae, Lamiaceae, Saxifragaceae, Ericaceae, and Gramineae have lower values. The existing roof greening in Beijing includes some pitfalls with respect to plant composition as well as plant selection that does not consider ecological functions. The following measures could be proposed to increase ecological functions: (1) Increasing the number of plants with shallow roots and with strong adaptation traits to roof conditions; (2) Enriching ecological communities with diverse plants with high ecological functions; and (3) Carrying out rational ecological planning and management based on detailed and objective data on plant species. Future studies should focus on specifying plant functional traits to enhance ecological functions. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Beyond Assuming Co-Benefits in Nature-Based Solutions: A Human-Centered Approach to Optimize Social and Ecological Outcomes for Advancing Sustainable Urban Planning
Sustainability 2019, 11(18), 4924; https://doi.org/10.3390/su11184924 - 09 Sep 2019
Cited by 1
Abstract
Urbanization deletes and degrades natural ecosystems, threatens biodiversity, and alienates people from the experience of nature. Nature-based solutions (NbS) that are inspired and supported by nature have the potential to deliver multifunctional environmental and social benefits to address these challenges in urban areas [...] Read more.
Urbanization deletes and degrades natural ecosystems, threatens biodiversity, and alienates people from the experience of nature. Nature-based solutions (NbS) that are inspired and supported by nature have the potential to deliver multifunctional environmental and social benefits to address these challenges in urban areas under context-specific conditions. NbS implementation often relies on a one-size-fits-all approach, although interventions that maximize one benefit (e.g., biodiversity conservation) may have no influence on, or even negatively affect, others (e.g., social justice). Furthermore, the current pathways from NbS to various benefits do not rely on a deep understanding of the underlying processes, prohibiting the identification of optimal solutions that maximize synergies across pathways. We present a comprehensive socio-ecological framework that addresses these issues by recognizing that cities are human-dominated environments that are foremost built and maintained to support humans. Our framework demonstrates how we can use experiments and niche species models to understand and predict where species will be and where people will be healthy and happy in a comparable manner. This knowledge can then be integrated into decision support tools that use optimization algorithms to understand trade-offs, identify synergies, and provide planners with the tools needed to tailor context-specific NbS to yield greener, more resilient cities with happier people and reduced inequality. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Open AccessArticle
Chicago’s Urban Cemeteries as Habitat for Cavity-Nesting Birds
Sustainability 2019, 11(12), 3258; https://doi.org/10.3390/su11123258 - 13 Jun 2019
Cited by 1
Abstract
Although not explicitly managed for conservation, urban cemeteries may provide a reserve of dead and dying trees for cavity-nesting birds. However, the ability of urban cemeteries to support these birds on current landscapes is largely unknown. We surveyed cavity-nesting birds and their habitat [...] Read more.
Although not explicitly managed for conservation, urban cemeteries may provide a reserve of dead and dying trees for cavity-nesting birds. However, the ability of urban cemeteries to support these birds on current landscapes is largely unknown. We surveyed cavity-nesting birds and their habitat in 18 cemeteries in Chicago, Illinois (USA). At each location, we examined vegetation, availability of gravestones and monuments for perches, and landscape-level environmental conditions. We tested the importance of these variables for presence of individual bird species, and for overall richness of native cavity-nesting birds. We also assessed the availability and characteristics of tree cavities and their distribution among different tree species. We found that most cemeteries contained at least one dead or dying tree. Across all sampled areas, we detected 207 naturally-occurring and 77 excavated tree cavities. Tree species generally supported cavities in proportion to their abundance. We observed 12 native and two non-native cavity-nesting bird species in the cemeteries. Cavity-nesting bird species richness was best explained by landscape-level variables such as canopy cover and distance to water, but local-level variables (e.g., number of graves in a 50 m radius) influenced habitat selection for some species. Based on our results, we make suggestions for how both existing cemeteries and new “green” cemeteries can support biodiversity conservation. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview
Biodiversity Impact of Green Roofs and Constructed Wetlands as Progressive Eco-Technologies in Urban Areas
Sustainability 2019, 11(20), 5846; https://doi.org/10.3390/su11205846 - 21 Oct 2019
Cited by 1
Abstract
The total amount of sealed surfaces is increasing in many urban areas, which presents a challenge for sewerage systems and wastewater treatment plants when extreme rainfall events occur. One promising solution approach is the application of decentralized eco-technologies for water management such as [...] Read more.
The total amount of sealed surfaces is increasing in many urban areas, which presents a challenge for sewerage systems and wastewater treatment plants when extreme rainfall events occur. One promising solution approach is the application of decentralized eco-technologies for water management such as green roofs and constructed wetlands, which also have the potential to improve urban biodiversity. We review the effects of these two eco-technologies on species richness, abundance and other facets of biodiversity (e.g., functional diversity). We find that while green roofs support fewer species than ground-level habitats and thus are not a substitute for the latter, the increase in green roof structural diversity supports species richness. Species abundance benefits from improved roof conditions (e.g., increased substrate depth). Few studies have investigated the functional diversity of green roofs so far, but the typical traits of green roof species have been identified. The biodiversity of animals in constructed wetlands can be improved by applying animal-aided design rather than by solely considering engineering requirements. For example, flat and barrier-free shore areas, diverse vegetation, and heterogeneous surroundings increase the attractiveness of constructed wetlands for a range of animals. We suggest that by combining and making increasing use of these two eco-technologies in urban areas, biodiversity will benefit. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

Open AccessConcept Paper
A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design
Sustainability 2019, 11(24), 6972; https://doi.org/10.3390/su11246972 - 06 Dec 2019
Abstract
Recent research has highlighted the significance of cities for biodiversity, making them important places for conservation in their own right. Current conservation approaches in cities are mostly defensive. Thus, they focus on remnant pockets of natural areas or try to protect particular species [...] Read more.
Recent research has highlighted the significance of cities for biodiversity, making them important places for conservation in their own right. Current conservation approaches in cities are mostly defensive. Thus, they focus on remnant pockets of natural areas or try to protect particular species that occur in the built environment. These approaches are vulnerable to further urban development and do not create habitats. An alternative strategy is to make wildlife an integral part of urban development and thereby create a new habitat in the built-up area. Here we address the challenge of choosing target species for such wildlife-inclusive urban design. The starting point of our conceptual framework is the regional species pool, which can be obtained from geo-referenced species data. The existing habitat types on and around the development site and dispersal barriers limit the species numbers to the local species potential. In the next step, the site’s potential for each species is analyzed—how can it be upgraded to host species given the planned development and the life-cycle of the species? For the final choice of target species, traits related to the human–animal interaction are considered. We suggest that stakeholders will be involved in the final species selection. Our approach differs from existing practice, such as expert choice of priority species, by (1) representing an open process where many species are potential targets of conservation, (2) the involvement of stakeholders in a participatory way. Our approach can also be used at larger spatial scales such as quarters or entire cities. Full article
(This article belongs to the Special Issue Biodiversity Conservation and Sustainable Urban Development)
Show Figures

Figure 1

Back to TopTop