A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design
Abstract
:1. Introduction
2. The Species Selection Framework
2.1. From the Regional Species Pool to the Local Species Potential
2.1.1. Regional Species Pool: Use of Geo-Referenced Species Occurrence Data
2.1.2. Spatially Explicit Species Occurrences: Locating Species according to Habitat Type
2.1.3. Local Species Potential: Site Limitations and Dispersal Barriers
2.2. From the Local Species Potential to Target Species Selection
2.2.1. Evaluating the Human–Animal Relationship: Species’ Socio-Cultural Traits
2.2.2. Evaluating the Human-Animal Relationship: Stakeholder Analysis and Stakeholder Demands
2.2.3. Prioritization of Species: Balancing Feasibility and Stakeholder Demands
2.2.4. Participative Selection of Target Species
3. Conclusions and Open Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Design and Data Acquisition
Appendix A.2. Data Preparation
Appendix A.3. Spatial Analysis
References
- Díaz, S.; Settele, J.; Brondizio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. IPBES. In Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Werner, P.; Zahner, R. Urban patterns and biological diversity: A review. In Urban Biodiversity and Design; Wiley: Oxford, UK, 2010; pp. 145–173. [Google Scholar]
- Kettel, E.F.; Gentle, L.K.; Quinn, J.L.; Yarnell, R.W. The breeding performance of raptors in urban landscapes: A review and meta-Analysis. J. Ornithol. 2018, 159, 1–18. [Google Scholar] [CrossRef]
- Luck, G.W. A review of the relationships between human population density and biodiversity. Biol. Rev. 2007, 82, 607–645. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Miller, J.R.; Hobbs, R.J. Conservation where people live and work. Conserv. Biol. 2002, 16, 330–337. [Google Scholar] [CrossRef]
- Shaffer, M.L. Minimum population sizes for species conservation. BioScience 1981, 31, 131–134. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Nilon, C.H.; Lepczyk, C.A.; Parker, T.S.; Warren, P.S.; Cilliers, S.S.; Goddard, M.A.; Hahs, A.K.; Herzog, C.; Katti, M.; et al. Hierarchical filters determine community assembly of urban species pools. Ecology 2016, 97, 2952–2963. [Google Scholar] [CrossRef] [Green Version]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R.; et al. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-Analysis of factors determining intra-Urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-Space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- De Coster, G.; De Laet, J.; Vangestel, C.; Adriaensen, F.; Lens, L. Citizen science in action—Evidence for long-Term, region-Wide House Sparrow declines in Flanders, Belgium. Landsc. Urban Plan. 2015, 134, 139–146. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-Being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the future of urban biodiversity: A global review of city-Scale initiatives. Bioscience 2017, 67, 332–342. [Google Scholar] [CrossRef]
- Filazzola, A.; Shrestha, N.; MacIvor, J.S. The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-Analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Garrard, G.E.; Williams, N.S.G.; Mata, L.; Thomas, J.; Bekessy, S.A. Biodiversity sensitive urban design. Conserv. Lett. 2017, 11, e12411. [Google Scholar] [CrossRef]
- Weisser, W.; Hauck, T.E. Animal-Aided Design—Using a species life-Cycle to improve open space planning and conservation in cities and elsewhere. Biorxiv 2017, 1–14. (in press). [Google Scholar]
- Snep, R.; Opdam, P. Integrating nature values in urban planning and design. In Urban Ecology; Gaston, K.J., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 261–286. [Google Scholar]
- Sodhi, N.S.; Ehrlich, P.R. Conservation Biology for All; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Brook, T. Conservation planning and priorities. In Conservation Biology for All; Sodhi, N.S., Ehrlich, P.R., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 199–219. [Google Scholar]
- Andelman, S.J.; Fagan, W.F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes? Proc. Natl. Acad. Sci. USA 2000, 97, 5954–5959. [Google Scholar] [CrossRef] [Green Version]
- Gossner, M.M.; Fonseca, C.R.; Pašalić, E.; Türke, M.; Lange, M.; Weisser, W.W. Limitations to the use of arthropods as temperate forests indicators. Biodivers. Conserv. 2014, 23, 945–962. [Google Scholar] [CrossRef]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Env. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Box, J.; Harrison, C. Minimum targets for accessible natural greenspace in urban areas. Urban Wildl. News 1994, 11, 10–11. [Google Scholar]
- Hunter, M.L.; Gibbs, J.P. Fundamentals of Conservation Biology; Wiley-Blackwell: Cambridge, UK, 2007. [Google Scholar]
- Berkes, F. Rethinking Community-Based Conservation. Conserv. Biol. 2004, 18, 621–630. [Google Scholar] [CrossRef]
- Otto, J.; Zerner, C.; Robinson, J.; Donovan, R.; Lavelle, M.; Villarreal, R.; Salafsky, N.; Alcorn, J.; Seymour, F.; Kleyneyer, C.; et al. Natural Connections: Perspectives in Community-Based Conservation; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Nilon, C.H. Urban biodiversity and the importance of management and conservation. Landsc. Ecol. Eng. 2011, 7, 45–52. [Google Scholar] [CrossRef]
- Hostetler, M.E. The Green Leap: A Primer for Conserving Biodiversity in Subdivision Development, 1st ed.; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- GBIF.Org GBIF Home Page. Available online: https://www.gbif.org (accessed on 24 September 2018).
- Underwood, E.; Taylor, K.; Tucker, G. The use of biodiversity data in spatial planning and impact assessment in Europe. Res. Ideas Outcomes 2018, 4. [Google Scholar] [CrossRef]
- Wüest, R.O.; Zimmermann, N.E.; Zurell, D.; Alexander, J.M.; Fritz, S.A.; Hof, C.; Kreft, H.; Normand, S.; Cabral, J.S.; Szekely, E.; et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 2019, 1–12. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.13633 (accessed on 4 December 2019). [CrossRef] [Green Version]
- Cayuela, H.; Lambrey, J.; Vacher, J.-P.; Miaud, C. Highlighting the effects of land-Use change on a threatened amphibian in a human-Dominated landscape. Popul. Ecol. 2015, 57, 433–443. [Google Scholar] [CrossRef]
- Albert, C.H.; Rayfield, B.; Dumitru, M.; Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-Use change. Conserv. Biol. 2017, 31, 1383–1396. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, M.; Wardell-Johnson, G. Roost tree characteristics determine use by the white-Striped freetail bat (Tadarida australis, Chiroptera: Molossidae) in suburban subtropical Brisbane, Australia. Austral. Ecol. 2006, 31, 228–239. [Google Scholar] [CrossRef]
- Rhodes, M.; Wardell-Johnson, G.W.; Rhodes, M.P.; Raymond, B.E.N. Applying network analysis to the conservation of habitat trees in urban environments: A case study from Brisbane, Australia. Conserv. Biol. 2006, 20, 861–870. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Williams, N.S.G.; Hahs, A.K.; Livesley, S.J. Approaches to urban vegetation management and the impacts on urban bird and bat assemblages. Landsc. Urban Plan. 2016, 153, 28–39. [Google Scholar] [CrossRef]
- Le Roux, D.S.; Ikin, K.; Lindenmayer, D.B.; Manning, A.D.; Gibbons, P. The value of scattered trees for wildlife: Contrasting effects of landscape context and tree size. Divers. Distrib. 2018, 24, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Carpaneto, G.M.; Mazziotta, A.; Coletti, G.; Luiselli, L.; Audisio, P. Conflict between insect conservation and public safety: The case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J. Insect Conserv. 2010, 14, 555–565. [Google Scholar] [CrossRef]
- Mason, J.; Moorman, C.; Hess, G.; Sinclair, K. Designing suburban greenways to provide habitat for forest-Breeding birds. Landsc. Urban Plan. 2007, 80, 153–164. [Google Scholar] [CrossRef]
- Parker, T.S.; Nilon, C.H. Urban landscape characteristics correlated with the synurbization of wildlife. Landsc. Urban Plan. 2012, 106, 316–325. [Google Scholar] [CrossRef]
- Turrini, T.; Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Chang. Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.T.; Tallamy, D.W.; Philips, C.; Shropshire, K.J. Non-Native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 2010, 1, 1–22. [Google Scholar] [CrossRef]
- Concepción, E.D.; Götzenberger, L.; Nobis, M.P.; Bello, F.; Obrist, M.K.; Moretti, M. Contrasting trait assembly patterns in plant and bird communities along environmental and human-Induced land-Use gradients. Ecography 2017, 40, 753–763. [Google Scholar] [CrossRef]
- Evans, K.L.; Chamberlain, D.E.; Hatchwell, B.J.; Gregory, R.D.; Gaston, K.J. What makes an urban bird? Glob. Chang. Biol. 2011, 17, 32–44. [Google Scholar] [CrossRef]
- Croci, S.; Butet, A.; Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 2008, 110, 223–240. [Google Scholar] [CrossRef]
- Grant, B.; Middendorf, G.; Colgan, M.; Ahmad, H.; Vogel, M. Ecology of urban amphibians and reptiles: Urbanophiles, urbanophobes, and the urbanoblivious In Urban Ecology: Patterns, Processes, and Applications; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Harrison, T.; Gibbs, J.; Winfree, R. Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-History traits. Glob. Chang. Biol. 2018, 24, 287–296. [Google Scholar] [CrossRef]
- Jain, A.; Lim, F.K.S.; Webb, E.L. Species-Habitat relationships and ecological correlates of butterfly abundance in a transformed tropical landscape. Biotropica 2017, 49, 355–364. [Google Scholar] [CrossRef]
- Lizee, M.H.; Mauffrey, J.F.; Tatoni, T.; Deschamps-Cottin, M. Monitoring urban environments on the basis of biological traits. Ecol. Indic. 2011, 11, 353–361. [Google Scholar] [CrossRef]
- Allen, A.P.; O’Connor, R.J. Hierarchical correlates of bird assemblage structure on northeastern USA lakes. Env. Monit. Assess. 2000, 62, 15–35. [Google Scholar] [CrossRef]
- Jung, K.; Threlfall, C.G. Urbanisation and its effects on bats—A global meta-Analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 13–33. [Google Scholar]
- Threlfall, C.; Law, B.; Penman, T.; Banks, P.B. Ecological processes in urban landscapes: Mechanisms influencing the distribution and activity of insectivorous bats. Ecography 2011, 34, 814–826. [Google Scholar] [CrossRef]
- Russo, D.; Ancillotto, L. Sensitivity of bats to urbanization: A review. Mamm. Biol. 2015, 80, 205–212. [Google Scholar] [CrossRef]
- Pollack, L.; Ondrasek, N.R.; Calisi, R. Urban health and ecology: The promise of an avian biomonitoring tool. Curr. Zool. 2017, 63, 205–212. [Google Scholar] [CrossRef]
- Kight, C.R.; Swaddle, J.P. How and why environmental noise impacts animals: An integrative, mechanistic review. Ecol. Lett. 2011, 14, 1052–1061. [Google Scholar] [CrossRef]
- Spoelstra, K.; van Grunsven, R.H.A.; Ramakers, J.J.C.; Ferguson, K.B.; Raap, T.; Donners, M.; Veenendaal, E.M.; Visser, M.E. Response of bats to light with different spectra: Light-Shy and agile bat presence is affected by white and green, but not red light. Proc. Biol. Sci. 2017, 284, 1855. [Google Scholar] [CrossRef]
- Spoelstra, K.; van Grunsven, R.H.A.; Donners, M.; Gienapp, P.; Huigens, M.E.; Slaterus, R.; Berendse, F.; Visser, M.E.; Veenendaal, E. Experimental illumination of natural habitat—An experimental set-Up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. B 2015, 370, 1667. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J.Q.; de Jong, M.; van Grunsven, R.H.A.; Matson, K.D.; Haussmann, M.F.; Meerlo, P.; Visser, M.E.; Spoelstra, K. Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-Living songbird. Glob. Chang. Biol. 2017, 23, 4987–4994. [Google Scholar] [CrossRef]
- Manfrin, A.; Singer, G.; Larsen, S.; Weiß, N.; van Grunsven, R.H.A.; Weiß, N.-S.; Wohlfahrt, S.; Monaghan, M.T.; Hölker, F. Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Front. Environ. Sci. 2017, 5, 61. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206. [Google Scholar] [CrossRef]
- Hostetler, M.; Holling, C.S. Detecting the scales at which birds respond to structure in urban landscapes. Urban Ecosyst. 2000, 4, 25–54. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Inger, R.; Hancock, S.; Anderson, K.; Gaston, K.J. Movement of feeder-Using songbirds: The influence of urban features. Sci. Rep. 2016, 6, 37669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, D.F.; Miller, C.; Possingham, H.P.; Fuller, R.A. The influence of patch area and connectivity on avian communities in urban revegetation. Biol. Conserv. 2011, 144, 722–729. [Google Scholar] [CrossRef]
- Vergnes, A.; Viol, I.L.; Clergeau, P. Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 2012, 145, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Bergerot, B.; Fontaine, B.; Julliard, R.; Baguette, M. Landscape variables impact the structure and composition of butterfly assemblages along an urbanization gradient. Landsc. Ecol. 2011, 26, 83–94. [Google Scholar] [CrossRef]
- De la Flor, Y.A.D.; Burkman, C.E.; Eldredge, T.K.; Gardiner, M.M. Patch and landscape-Scale variables influence the taxonomic and functional composition of beetles in urban greenspaces. Ecosphere 2017, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Rochat, E.; Manel, S.; Deschamps-Cottin, M.; Widmer, I.; Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity 2017, 119, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Penone, C.; Kerbiriou, C.; Julien, J.F.; Julliard, R.; Machon, N.; Le Viol, I. Urbanisation effect on Orthoptera: Which scale matters? Insect Conserv. Divers. 2013, 6, 319–327. [Google Scholar] [CrossRef]
- Munshi-South, J. Urban landscape genetics: Canopy cover predicts gene flow between white-Footed mouse (Peromyscus leucopus) populations in New York City. Mol. Ecol. 2012, 21, 1360–1378. [Google Scholar] [CrossRef]
- Altringham, J.; Kerth, G. Bats and roads. In Bats in the Anthropocene: Conservation of Bats in A Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 53–62. [Google Scholar]
- Rondinini, C.; Doncaster, C.P. Roads as barriers to movement for hedgehogs. Funct. Ecol. 2002, 16, 504–509. [Google Scholar] [CrossRef]
- Johnson, C.D.; Evans, D.; Jones, D. Birds and roads: Reduced transit for smaller species over roads within an urban environment. Front. Ecol. Evol. 2017, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Pett, T.J.; Shwartz, A.; Irvine, K.N.; Dallimer, M.; Davies, Z.G. Unpacking the People–Biodiversity Paradox: A Conceptual Framework. Bioscience 2016, 66, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Fuller, R.A.; Irvine, K.N.; Devine-Wright, P.; Warren, P.H.; Gaston, K.J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007, 3, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Schirpke, U.; Meisch, C.; Tappeiner, U. Symbolic species as a cultural ecosystem service in the European Alps: Insights and open issues. Landsc. Ecol. 2018, 33, 711–730. [Google Scholar] [CrossRef] [Green Version]
- Millard, A. Cultural aspects of urban biodiversity. In Urban Biodiversity and Design; Müller, N., Werner, P., Kelcey, J.G., Eds.; Wiley: Oxford, UK, 2010; pp. 56–80. [Google Scholar]
- Dunn, R.R. Global mapping of ecosystem disservices: The unspoken reality that nature sometimes kills us. Biotropica 2010, 42, 555–557. [Google Scholar] [CrossRef]
- Barua, M.; Bhagwat, S.A.; Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 2013, 157, 309–316. [Google Scholar] [CrossRef]
- Belaire, J.A.; Westphal, L.M.; Whelan, C.J.; Minor, E.S. Urban residents’ perceptions of birds in the neighborhood: Biodiversity, cultural ecosystem services, and disservices. Birds Connect Urban Resid. Biodivers. Ecosyst. Serv. 2015, 117, 192–202. [Google Scholar] [CrossRef]
- Bjerke, T.; Østdahl, T. Animal-Related attitudes and activities in an urban population. Anthrozoös 2004, 17, 109–129. [Google Scholar] [CrossRef]
- McGinlay, J.; Parsons, D.J.; Morris, J.; Hubatova, M.; Graves, A.; Bradbury, R.B.; Bullock, J.M. Do charismatic species groups generate more cultural ecosystem service benefits? Ecosyst. Serv. 2017, 27, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Perceived species-Richness in urban green spaces: Cues, accuracy and well-Being impacts. Landsc. Urban Plan. 2018, 172, 1–10. [Google Scholar] [CrossRef]
- Saw, L.E.; Lim, F.K.S.; Carrasco, L.R. The relationship between natural park usage and happiness does not hold in a tropical city-State. PLoS ONE 2015, 10, e0133781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindemann-Matthies, P.; Keller, D.; Li, X.; Schmid, B. Attitudes toward forest diversity and forest ecosystem services—A cross-Cultural comparison between China and Switzerland. J. Plant Ecol. 2013, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, T.; Sugimoto, K.; Numata, S. Childhood experience of nature influences the willingness to coexist with biodiversity in cities. Palgrave. Commun. 2017, 3, 17071. [Google Scholar] [CrossRef]
- Robinson, K.F.; Fuller, A.K.; Hurst, J.E.; Swift, B.L.; Kirsch, A.; Farquhar, J.; Decker, D.J.; Siemer, W.F. Structured decision making as a framework for large-Scale wildlife harvest management decisions. Ecosphere 2016, 7, e01613. [Google Scholar] [CrossRef]
- Arnstein, S.R. A ladder of citizen participation. J. Am. Inst. Plan. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- White, S.C. Depoliticising development: The uses and abuses of participation. Dev. Pract. 1996, 6, 6–15. [Google Scholar] [CrossRef]
- Ukowitz, M.; Hübner, R. Interventionsforschung: Band 3: Wege der Vermittlung. Intervention—Partizipation; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018. [Google Scholar]
- Jacobson, S.K.; Wald, D.M.; Haynes, N.; Sakurai, R. Urban wildlife communication and negotiation. In Urban Wildlife Conservation: Theory and Practice; McCleery, R.A., Moorman, C.E., Peterson, M.N., Eds.; Springer US: Boston, MA, USA, 2014; pp. 217–238. [Google Scholar]
- Hostetler, M.; Swiman, E.; Prizzia, A.; Noiseux, K. Reaching residents of green communities: Evaluation of a unique environmental education program. Appl. Environ. Educ. Commun. 2008, 7, 114–124. [Google Scholar] [CrossRef]
- EEA. Joint MNHN-EEA Report 2014: Terrestrial Habitat Mapping in Europe; An Overview. Copenhagen, Denmark, 2014. Available online: https://www.eea.europa.eu/publications/terrestrial-habitat-mapping-in-europe (accessed on 5 December 2019).
- Hostetler, M.; Knowles-Yanez, K. Land use, scale, and bird distributions in the Phoenix metropolitan area. Landsc. Urban Plan. 2003, 62, 55–68. [Google Scholar] [CrossRef]
- Sukopp, H.; Weiler, S. Biotope mapping and nature conservation strategies in urban areas of the Federal Republic of Germany. Landsc. Urban Plan. 1988, 15, 39–58. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Env. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Bennett, D.J.; Sanders, J.; Hudson, L.N. Taxon Names Resolver: A Python Package for the Automatic Search of Taxon Names Against the Global Names Resolver; Zenodo, 2016. [Google Scholar] [CrossRef]
- Chamberlain, S.; Szoecs, E.; Foster, Z.; Arendsee, Z.; Boettiger, C.; Ram, K.; Bartomeus, I.; Baumgartner, J.; O’Donnell, J.; Oksanen, J.; et al. Taxize: Taxonomic Information from around the Web. R Package, Version 0.9.5; 2019. Available online: https://journal.r-project.org/archive/2018/RJ-2018-009/RJ-2018-009.pdf (accessed on 5 December 2019).
- Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
Limiting Factors of a Site and Its Surroundings | Requirements of the Species that May Limit its Occurrence | Necessary Checks of Existing Habitat Conditions (Examples) | Necessary Checks of Development Plans (Examples) | |
---|---|---|---|---|
Potential and limitations of the site | Habitat structures such as old trees, large water bodies (e.g., lakes, rivers), soil composition, tree density | Particular feeding preferences, need of resting or hibernation sites, breeding sites, and resting sites Note that habitat requirements may differ between life cycle stages of the same species. | Do mature trees with cavities exist that can serve as breeding or resting sites for woodpeckers or bats? Are there large water bodies that fulfill the habitat requirements of target amphibians? Is the tree density at the project site high enough to fulfill the habitat requirements of forest species? | Which ecological requirements can already be fulfilled through existing habitat structures? Which requirements can be fulfilled during the development? Which habitat requirements of a species are not realizable? |
Transport infrastructure, traffic, pollution, noise, light | Shelter from disturbances | Are disturbances likely to interfere with the life-cycle of a species? | ||
Surround-ings | Size of project site, landscape connectivity | Home range | Are home range requirements of a species met? | Do land-use plans ensure that landscape connectivity, corridors will be maintained? Is joint management of connected areas possible? Will barriers be removed in the future? |
Dispersal barriers | Corridors to and connectivity with relevant areas, such as gardens, backyards, parks, forests | Dispersal ability | Can species reach the project site through existing corridors? | |
Barriers | Sensitivity to barriers | Do barriers need to be removed in order to allow the immigration of the species? |
Category of Interaction | Examples | Species Traits | Examples of Species |
---|---|---|---|
Observability | observability without technical equipment recognisability change in observability with season (e.g., hibernation, breeding period) | color, size, activity period (day/night), single or in groups, vocalizations distinct patterns or features migration, hibernation | song of songbirds eye patterns on butterfly wings migratory behavior of songbirds mating ritual of hedgehogs |
Benefits | Regulating Services: pollination decomposition pest control seed dispersal Cultural Services: aesthetic value health and wellbeing educational value cultural value symbolic value sense of place | diet foraging mode and site depiction on flags, emblems, logos in the region | pollination by bees earthworm activity consumption of mosquitoes by bats seed storage by squirrels heraldic animals |
Conflicts | negative impacts on human health economic damage negative psychological effects negative impact on other species | disease vectors dangerous predators storage pests damage to infrastructure traits related to inflicting fear, phobia (in spiders) invasive species | lice, tick, mosquito wolf, bear, wild boar, rice weevil, clothes moth, rat, woodpecker holes in facades snakes, spiders raccoon, nutria |
Attitudes Towards Wildlife Occurrence at the Project Site, e.g., in Residential Areas |
---|
Attitude towards ecological topics and natural design and landscaping |
Desired use of space (e.g., play space concept) |
Aesthetic demands (e.g., design concept) |
Requirements for maintenance of buildings and open space |
Budget for implementation of measures and maintenance thereof |
Administrative requirements, e.g., compensatory measures, species protection legislation |
Local peculiarities or characteristics of the city or region with respect to certain species or taxonomic groups (e.g., cultural and historical aspects) |
Objective | Measure | Species A | Species B |
---|---|---|---|
Provide all necessary habitat structures for target species | Costs of different habitat structures (implementation and maintenance) | ||
Fulfill functions of the open space required by humans | Conflicts between animal habitat requirements and human open space requirements (yes, no) | ||
Find solutions to avoid conflicts. | Are there solutions available or can be designed to avoid the negative effects of a species? | ||
Enable positive human-wildlife interactions | Observability of different species (low, medium, high) | ||
Generate benefits for the local community at the project site | Regulating or cultural services delivered by species | ||
Avoid conflicts between target species and humans | Probability of conflict (low, medium, high) | ||
Protect threatened species that are present at the project site | Protection status (e.g., IUCN and country-specific species lists) | ||
Strengthen cultural identity | Local cultural/symbolic value |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apfelbeck, B.; Jakoby, C.; Hanusch, M.; Steffani, E.B.; Hauck, T.E.; Weisser, W.W. A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design. Sustainability 2019, 11, 6972. https://doi.org/10.3390/su11246972
Apfelbeck B, Jakoby C, Hanusch M, Steffani EB, Hauck TE, Weisser WW. A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design. Sustainability. 2019; 11(24):6972. https://doi.org/10.3390/su11246972
Chicago/Turabian StyleApfelbeck, Beate, Christine Jakoby, Maximilian Hanusch, Emanuel Boas Steffani, Thomas E. Hauck, and Wolfgang W. Weisser. 2019. "A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design" Sustainability 11, no. 24: 6972. https://doi.org/10.3390/su11246972