sustainability-logo

Journal Browser

Journal Browser

Soil Quality and Innovation in Agriculture: Dynamics, Indicators, and Sustainability, 2nd Edition

A special issue of Sustainability (ISSN 2071-1050).

Deadline for manuscript submissions: 31 December 2026 | Viewed by 1482

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Industrial and Forage Crops, Hellenic Agricultural Organization “Demeter”, 41335 Larisa, Greece
Interests: soil quality; soil health management; soil quality monitoring; soil organic carbon pools; re-use of agricultural and municipal wastes on soils; use of innovative technologies in agriculture/precision agriculture
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Life on Earth depends on healthy soils. Soil is the living skin of our planet, essential for the provision of food, clean water, good air, a safe climate, and biodiverse landscapes. Globally, soils store about 80% of the carbon in terrestrial ecosystems, making them the largest terrestrial carbon sink. However, soils are fragile, and the impact of our actions on soils are often overlooked or ignored. To ensure a healthy and green future for our current and future generations, we need to protect and take care of soils.

Soil quality has emerged as the central concept for examining and integrating relationships and functions among various biological, chemical, and physical parameters of soils, which are important in the context of sustainable land use and management.

Soil quality degradation has been one of the major challenges affecting the agriculture sector, and soil management could serve as an essential tool for improving soil quality in agricultural lands. Assessing soil quality involves the measurement of physical, chemical, and biological soil properties that act as soil quality indicators and use them to identify soil properties that may inhibit soil function or to monitor soil management practices’ effects on soil quality.  Nowadays, innovations in agriculture could provide new tools for sustainable soil management that could enhance the soil quality of our lands.

This issue focuses on the advances of soil quality research, including the methods of soil quality monitoring, potential indicators and their dynamics, which could be used for soil quality assessment, and the effect of innovation in agriculture on soil quality dynamics.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Soil quality indicators and their dynamics;
  • Methods of soil quality monitoring;
  • Management and restoration of soil quality in different soil environments;
  • Evaluation of the impact of soil quality degradation on agricultural production;
  • Innovations in agriculture affecting soil quality and sustainability.

We look forward to receiving your contributions.

Dr. Eleftherios Evangelou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • soil quality indicators
  • sustainable soil management
  • soil quality monitoring
  • innovation in agriculture
  • soil functions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3413 KiB  
Article
Short-Term Effects of Mustard (Sinapis alba L.) Cover Crop on Soil Quality in a Maize Production System
by Silvia Quintana-Esteras, Clara Martí, Oriol Ortiz and David Badía
Sustainability 2025, 17(13), 5949; https://doi.org/10.3390/su17135949 - 28 Jun 2025
Viewed by 345
Abstract
Soil health is vital for food security and ecosystem services supporting climate change mitigation. Cover crops (CCs) improve soil quality and crop yields in intensive agriculture. This study assessed the impact of Sinapis alba L. as a CC on ten physical, chemical, and [...] Read more.
Soil health is vital for food security and ecosystem services supporting climate change mitigation. Cover crops (CCs) improve soil quality and crop yields in intensive agriculture. This study assessed the impact of Sinapis alba L. as a CC on ten physical, chemical, and biological soil indicators before maize planting. Three management systems were compared: (i) CC with conventional tillage (CT), (ii) CC under no tillage (NT), and (iii) tilled fallow without CC (TF). Measurements were taken at 60 and 90 days after sowing (DAS) at 0–6 and 0–20 cm depths. The Soil Quality Index (SQI) was higher at the surface under NT (0.69 at 60 DAS; 0.65 at 90 DAS). At 0–20 cm, SQI values increased at 90 DAS but did not differ among treatments. TF also showed improvements (up to +18% at 0–20 cm). Dissolved organic matter increased significantly (1.7–2.5 times), especially under NT and CT. NT enhanced structural stability (+70%) and reduced bulk density (−47%). All glomalin fractions decreased at 90 DAS; however, NT retained higher concentrations of recalcitrant glomalin in the 0–6 cm layer compared to the other treatments. These findings highlight S. alba under no tillage as a promising strategy to improve soil quality, though long-term studies are needed. Full article
Show Figures

Figure 1

25 pages, 5001 KiB  
Article
Mixed Compost Application: A Sustainable Tool for Improving Soil Carbon Dynamics in a Peach Orchard Under Mediterranean Conditions
by Maria Roberta Bruno, Mariagrazia Piarulli, Carolina Vitti, Marcello Mastrangelo, Alessandro Azzolini, Alessandro Ciurlia, Gianfranco Rana and Rossana Monica Ferrara
Sustainability 2025, 17(12), 5613; https://doi.org/10.3390/su17125613 - 18 Jun 2025
Viewed by 317
Abstract
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 [...] Read more.
This study investigated carbon dynamics in a peach orchard subjected to three treatments with a mixed compost amendment (MCA, 35% organic content): a control with no amendment (A0), a full dose (A1, 10 t ha−1), and a half dose (A2, 5 t ha−1). The sustainability of MCA was assessed in terms of (i) potential and (ii) actual soil respiration, (iii) soil carbon and physical properties and (iv) fruit quality and yield. Carbon dioxide (CO2) emissions were measured both in the laboratory, by incubating soil samples without root removal, and in the field using static chambers. Observations spanned three growing seasons (2021–2023). A correlation was found between actual and potential soil respiration, with emission peaks occurring near the time of MCA application. Cumulative actual CO2 emissions amounted to 5.6, 12.0 and 9.4 t CO2 ha−1 for A0, A1 and A2, respectively. MCA application (i) increased microbial respiration, (ii) reduced soil physical characteristics, such as bulk density and water-filled pore space, and (iii) slightly improved fruit quality, although the yield was not significantly affected. Furthermore, the MCA enhanced soil organic carbon and total nitrogen content compared to the control. These results suggest that high organic content amendments, such as MCA, could represent a strategy to maintain or increase soil organic matter in a sustainable way, although MCA does not improve carbon emission efficiency. Full article
Show Figures

Figure 1

20 pages, 1536 KiB  
Article
Risk Assessment of Heavy Metal Pollution in Agricultural Soils Around Industrial Enterprises in Lanzhou, China: A Multi-Industry Perspective Promoting Land Sustainability
by Kaixiang Duan, Yingquan Li, Wanting Yang, Yuda Lin, Lin Rao and Chenxing Han
Sustainability 2025, 17(12), 5343; https://doi.org/10.3390/su17125343 - 10 Jun 2025
Viewed by 477
Abstract
Systematic assessment of heavy metal contamination in agricultural soils is critical for addressing ecological and public health risks in industrial-intensive cities like Lanzhou, with direct implications for achieving UN Sustainable Development Goals (SDGs) 2 (Zero Hunger), 15 (Life on Land), and 3 (Good [...] Read more.
Systematic assessment of heavy metal contamination in agricultural soils is critical for addressing ecological and public health risks in industrial-intensive cities like Lanzhou, with direct implications for achieving UN Sustainable Development Goals (SDGs) 2 (Zero Hunger), 15 (Life on Land), and 3 (Good Health). The present study evaluates farmland soils around six industrial sectors: waste disposal (WDZ), pharmaceutical manufacturing (PMZ), chemical manufacturing (CMZ), petrochemical industry (PIZ), metal smelting (MSZ), mining (MZ) and one sewage-irrigated zone (SIZ) using geo-accumulation index, Nemerow composite pollution index, potential ecological risk index, and health risk models. The following are the major findings: (1) SIZ and PMZ emerged as primary contamination clusters, with Hg (Igeo = 1.89) and Cd (Igeo = 0.61) showing marked accumulation. Chronic wastewater irrigation caused severe Hg contamination (0.97 mg·kg−1) in SIZ, where 100% of the samples reached strong polluted levels according to the Nemerow composite pollution index; (2) Hg and Cd dominated the ecological risks, with 41.32% of the samples exhibiting critical Hg risks (100% in PMZ and SIZ) and 32.63% showing strong Cd risks; and (3) oral ingestion constituted the dominant exposure pathway. Children faced carcinogenic risks (CR = 1.33 × 10−4) exceeding safety thresholds, while adult risks remained acceptable. Notably, high Hg and Cd levels did not translate to proportionally higher health risks due to differential toxicological parameters. The study recommends prioritizing Hg and Cd control in PMZ and SIZ, with targeted exposure prevention measures for children. Full article
Show Figures

Figure 1

Back to TopTop