Previous Issue
Volume 6, June
 
 

Sustain. Chem., Volume 6, Issue 3 (September 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 7078 KiB  
Article
Synthesis and Catalytic Performance of Cotton-Derived Mn–Ce and Mn–Co–Ce Biomorphic Fibers for Soot Combustion and CO Oxidation
by Nicolás Sacco, Ezequiel Banús, Juan P. Bortolozzi, Sabrina Leonardi, Eduardo Miró and Viviana Milt
Sustain. Chem. 2025, 6(3), 20; https://doi.org/10.3390/suschem6030020 (registering DOI) - 16 Jul 2025
Abstract
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion [...] Read more.
Biomorphic mineralization was employed to synthesize novel Mn–Ce and Mn–Co–Ce oxide fibers using commercial cotton as a biotemplate, aiming to assess their catalytic performance in diesel soot combustion and CO oxidation. Two synthesis protocols—one with and one without citric acid—were investigated. The inclusion of citric acid led to fibers with more uniform morphology, attributed to improved precursor distribution, although synthesis yields decreased for Co-containing systems. In soot combustion tests, Mn–Ce catalysts synthesized with citric acid outperformed their monometallic counterparts. While cobalt incorporation enhanced the mechanical robustness of the fibers, it did not significantly boost catalytic activity. Selected formulations were also evaluated for CO oxidation, with Mn–Co–Ce fibers achieving T50 values in the 240–290 °C range, comparable to Co–Ce nanofibers reported in the literature. These results demonstrate that biomorphic fibers produced through a simple and sustainable route can offer competitive performance in soot and CO oxidation applications. Full article
Show Figures

Figure 1

23 pages, 1593 KiB  
Review
Thermal Modification of Wood—A Review
by Veronika Jančíková and Michal Jablonský
Sustain. Chem. 2025, 6(3), 19; https://doi.org/10.3390/suschem6030019 - 11 Jul 2025
Viewed by 189
Abstract
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms [...] Read more.
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms of wood degradation during treatment and the resulting changes in the properties of the material. The benefits of thermal modification of wood include improved dimensional stability, increased resistance to biological decay, and improved durability, while potential risks such as reduced mechanical strength, color change, and higher costs of wood under certain conditions are also discussed. The review highlights recent advances in process optimization and evaluates the trade-offs between improved performance and possible structural drawbacks. Finally, future perspectives are outlined for sustainable applications of thermally modified wood in various industries. Emerging trends and future research directions in the field are identified, aiming to improve the performance and sustainability of thermally modified wood products in construction, furniture, and other industries. Full article
Show Figures

Figure 1

21 pages, 3488 KiB  
Article
Sample Origin Effect on Chemical Reactivity of Tajogaite Volcanic Ashes for Ancient Mortar Repair
by Imren Basar, David Torrens-Martín, Lucía Fernández-Carrasco, Cristhian Caiza, Joan Martínez-Bofill and Marcel Hürlimann
Sustain. Chem. 2025, 6(3), 18; https://doi.org/10.3390/suschem6030018 - 24 Jun 2025
Viewed by 394
Abstract
Volcanic ashes (VA) ejected by the Tajogaite Volcano were studied to determine their potential as pozzolanic materials for construction applications. A representative number of VA samples (15 in total) were collected from different geolocations and altitudes during and immediately after the volcanic eruption, [...] Read more.
Volcanic ashes (VA) ejected by the Tajogaite Volcano were studied to determine their potential as pozzolanic materials for construction applications. A representative number of VA samples (15 in total) were collected from different geolocations and altitudes during and immediately after the volcanic eruption, in order to assess their reactivity as a function of position and environmental exposure. Various analytical techniques—XRD, FTIR, and SEM/EDX—were used to determine the initial microstructural composition of the VA samples. Additionally, saturated lime testing and the Frattini test were performed to evaluate their pozzolanic reactivity for use in historical mortars. The microstructural analyses revealed that the dominant mineral phases are aluminosilicates. The reactivity tests confirmed a good pozzolanic response, with the formation of C-A-S-H gels identified as the main hydration products at the studied curing times. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop