sensors-logo

Journal Browser

Journal Browser

New Advances in Ultrasonic Sensors and Approaches for Nondestructive Testing and Imaging

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 1387

Special Issue Editor


E-Mail Website
Guest Editor
Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
Interests: shock wave lithotripsy (SWL); high-intensity focused ultrasound (HIFU); ultrasound-enhanced drug delivery; nondestructive evaluation (NDE); surface acoustic wave (SAW)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The current era witnesses significant advances and great progress in the field of ultrasonic sensors and their applications. This Special Issue aims to publish original manuscripts and the latest research on various ultrasonic sensors used for the conversion between acoustic energy and other forms (i.e., electrical, optical, and thermal energy). Towards this goal, we welcome submissions describing new cutting-edge sensor fabrication and ultrasonic approaches that address existing problems in nondestructive testing and imaging for industrial and biomedical fields.

The topics of interest include, but are not limited to, the following:

  • Ultrasound transducer for testing, imaging, therapy, substance manipulation, etc.;
  • Ultrasound sensors for industry and healthcare, including wearable and IoT designs;
  • SAW/BAW/MEMS ultrasonic sensors;
  • Fiber-laser-based ultrasound sensors;
  • Ultrasonic networking of intra-body devices.

Prof. Dr. Yufeng Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ultrasound transducer
  • ultrasound sensor
  • SAW/BAW/MEMS ultrasonic sensor
  • industry
  • healthcare
  • IoT
  • wearables
  • fiber-laser-based ultrasound sensor
  • ultrasonic networking

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

27 pages, 2758 KiB  
Review
A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics
by Débora Amorim, Patrícia C. Sousa, Carlos Abreu and Susana O. Catarino
Sensors 2025, 25(5), 1577; https://doi.org/10.3390/s25051577 - 4 Mar 2025
Cited by 1 | Viewed by 1001
Abstract
Surface acoustic wave (SAW)-based microfluidics has emerged as a promising technology for precisely manipulating particles and cells at the micro- and nanoscales. Acoustofluidic devices offer advantages such as low energy consumption, high throughput, and label-free operation, making them suitable for particle manipulation tasks [...] Read more.
Surface acoustic wave (SAW)-based microfluidics has emerged as a promising technology for precisely manipulating particles and cells at the micro- and nanoscales. Acoustofluidic devices offer advantages such as low energy consumption, high throughput, and label-free operation, making them suitable for particle manipulation tasks including pumping, mixing, sorting, and separation. In this review, we provide an overview and discussion of recent advancements in SAW-based microfluidic devices for micro- and nanoparticle manipulation. Through a thorough investigation of the literature, we explore interdigitated transducer designs, materials, fabrication techniques, microfluidic channel properties, and SAW operational modes of acoustofluidic devices. SAW-based actuators are mainly based on lithium niobate piezoelectric transducers, with a plethora of wavelengths, microfluidic dimensions, and transducer configurations, applied for different fluid manipulation methods: mixing, sorting, and separation. We observed the accuracy of particle sorting across different size ranges and discussed different alternative device configurations to enhance sensitivity. Additionally, the collected data show the successful implementation of SAW devices in real-world applications in medical diagnostics and environmental monitoring. By critically analyzing different approaches, we identified common trends, challenges, and potential areas for improvement in SAW-based microfluidics. Furthermore, we discuss the current state-of-the-art and opportunities for further research and development in this field. Full article
Show Figures

Figure 1

Back to TopTop