- Review
Deciphering Drug Repurposing Strategies: Antiviral Properties of Candidate Agents Against the Mpox Virus
- Aganze Gloire-Aimé Mushebenge and
- David Ditaba Mphuthi
Monkeypox (Mpox) has re-emerged as a global public health threat, with recent outbreaks linked to novel mutations that enhance viral transmissibility and immune evasion. The Mpox virus (MPXV), a double-stranded deoxyribonucleic acid (DNA) orthopoxvirus, shares high structural and enzymatic similarity with the variola virus, underscoring the need for urgent therapeutic interventions. While conventional antiviral development is time-intensive and costly, drug repurposing offers a rapid and cost-effective strategy by leveraging the established safety and pharmacological profiles of existing medications. This is a narrative integrative review synthesizing published evidence on drug repurposing strategies against MPXV. To address these issues, this review explores MPXV molecular targets critical for genome replication, transcription, and viral assembly, highlighting how the Food and Drug Administration (FDA)-approved antivirals (cidofovir, tecovirimat), antibiotics (minocycline, nitroxoline), antimalarials (atovaquone, mefloquine), immunomodulators (infliximab, adalimumab), and chemotherapeutics (doxorubicin) have demonstrated inhibitory activity against the virus using computational or experimental approaches. This review further evaluates advances in computational methodologies that have accelerated the identification of host-directed and viral-directed therapeutic candidates. Nonetheless, translational challenges persist, including pharmacokinetic limitations, toxicity concerns, and the limited efficacy of current antivirals such as tecovirimat in severe Mpox cases. Future research should integrate computational predictions with high-throughput screening, organ-on-chip technologies, and clinical pipelines, while using real-time genomic surveillance to track viral evolution. These strategies establish a scalable and sustainable framework for the MPXV drug discovery.
17 October 2025