Intranasally Administered Insulin as Neuromodulating Factor and Medication in Treatment of Neuropsychiatric Disorders—Current Findings from Clinical Trials
Abstract
1. Introduction
2. Intranasally Administered Insulin’s Effects on Memory, Cognitive Functions and Neurodegeneration
2.1. Memory and Cognitive Functions in Patients Without Confirmed Neuropsychiatric Disorders
2.2. Memory and Cognitive Functions in Patients Affected by Alzheimer’s Disease or Mild Cognitive Impairment
2.3. Memory and Cognitive Functions in Patients Affected by Parkinson’s Disease or Multiple System Atrophy
2.4. Memory and Cognitive Functions in Patients Affected by Schizophrenia and Affective Disorders
3. Intranasally Administered Insulin’s Effects on the Sense of Smell
4. Intranasally Administered Insulin’s Effects in Postoperative Delirium
5. Intranasally Administered Insulin’s Effects on Mood
6. Intranasally Administered Insulin’s Effects on Blood Flow in Cerebral Vascular Bed
7. Intranasally Administered Insulin’s Effects in Neurodevelopmental Disorders
8. Intranasally Administered Insulin’s Effects on Appetite and Modulation of Food Intake
9. Other Potential Neuropsychiatric Applications of Intranasal Insulin
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le, T.K.C.; Dao, X.D.; Nguyen, D.V.; Luu, D.H.; Bui, T.M.H.; Le, T.H.; Nguyen, H.T.; Le, T.N.; Hosaka, T.; Nguyen, T.T.T. Insulin Signaling and Its Application. Front. Endocrinol. 2023, 14, 1226655. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.-G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed]
- Rachdaoui, N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 1770. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Ebekozien, O.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S27–S49. [Google Scholar] [CrossRef]
- Sims, E.K.; Carr, A.L.J.; Oram, R.A.; DiMeglio, L.A.; Evans-Molina, C. 100 Years of Insulin: Celebrating the Past, Present and Future of Diabetes Therapy. Nat. Med. 2021, 27, 1154–1164. [Google Scholar] [CrossRef]
- Agrawal, R.; Reno, C.M.; Sharma, S.; Christensen, C.; Huang, Y.; Fisher, S.J. Insulin Action in the Brain Regulates Both Central and Peripheral Functions. Am. J. Physiol.-Endocrinol. Metab. 2021, 321, E156–E163. [Google Scholar] [CrossRef]
- Chen, W.; Cai, W.; Hoover, B.; Kahn, C.R. Insulin Action in the Brain: Cell Types, Circuits, and Diseases. Trends Neurosci. 2022, 45, 384–400. [Google Scholar] [CrossRef]
- Dakic, T.; Jevdjovic, T.; Lakic, I.; Ruzicic, A.; Jasnic, N.; Djurasevic, S.; Djordjevic, J.; Vujovic, P. The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? Int. J. Mol. Sci. 2023, 24, 6586. [Google Scholar] [CrossRef]
- Milstein, J.L.; Ferris, H.A. The Brain as an Insulin-Sensitive Metabolic Organ. Mol. Metab. 2021, 52, 101234. [Google Scholar] [CrossRef]
- Pomytkin, I.; Costa-Nunes, J.P.; Kasatkin, V.; Veniaminova, E.; Demchenko, A.; Lyundup, A.; Lesch, K.; Ponomarev, E.D.; Strekalova, T. Insulin Receptor in the Brain: Mechanisms of Activation and the Role in the <scp>CNS</Scp> Pathology and Treatment. CNS Neurosci. Ther. 2018, 24, 763–774. [Google Scholar] [CrossRef]
- Tabassum, A.; Badulescu, S.; Singh, E.; Asoro, R.; McIntyre, R.S.; Teopiz, K.M.; Llach, C.-D.; Shah, H.; Mansur, R.B. Central Effects of Acute Intranasal Insulin on Neuroimaging, Cognitive, and Behavioural Outcomes: A Systematic Review. Neurosci. Biobehav. Rev. 2024, 167, 105907. [Google Scholar] [CrossRef] [PubMed]
- Hallschmid, M. Intranasal Insulin for Alzheimer’s Disease. CNS Drugs 2021, 35, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Born, J.; Lange, T.; Kern, W.; McGregor, G.P.; Bickel, U.; Fehm, H.L. Sniffing Neuropeptides: A Transnasal Approach to the Human Brain. Nat. Neurosci. 2002, 5, 514–516. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Kellohen, K.L.; Ronaldson, P.T.; Davis, T.P. Distribution of Insulin in Trigeminal Nerve and Brain after Intranasal Administration. Sci. Rep. 2019, 9, 2621. [Google Scholar] [CrossRef]
- Thorne, R.G.; Pronk, G.J.; Padmanabhan, V.; Frey, W.H. Delivery of Insulin-like Growth Factor-I to the Rat Brain and Spinal Cord along Olfactory and Trigeminal Pathways Following Intranasal Administration. Neuroscience 2004, 127, 481–496. [Google Scholar] [CrossRef]
- Wingrove, J.; Swedrowska, M.; Scherließ, R.; Parry, M.; Ramjeeawon, M.; Taylor, D.; Gauthier, G.; Brown, L.; Amiel, S.; Zelaya, F.; et al. Characterisation of Nasal Devices for Delivery of Insulin to the Brain and Evaluation in Humans Using Functional Magnetic Resonance Imaging. J. Control. Release 2019, 302, 140–147. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, Y.; Manor, B.; Novak, P.; Milberg, W.; Zhang, J.; Fang, J.; Novak, V. Intranasal Insulin Enhanced Resting-State Functional Connectivity of Hippocampal Regions in Type 2 Diabetes. Diabetes 2015, 64, 1025–1034. [Google Scholar] [CrossRef]
- Novak, V.; Mantzoros, C.S.; Novak, P.; McGlinchey, R.; Dai, W.; Lioutas, V.; Buss, S.; Fortier, C.B.; Khan, F.; Aponte Becerra, L.; et al. MemAID: Memory Advancement with Intranasal Insulin vs. Placebo in Type 2 Diabetes and Control Participants: A Randomized Clinical Trial. J. Neurol. 2022, 269, 4817–4835. [Google Scholar] [CrossRef]
- Benedict, C. Intranasal Insulin Improves Memory in Humans. Psychoneuroendocrinology 2004, 29, 1326–1334. [Google Scholar] [CrossRef]
- Benedict, C.; Hallschmid, M.; Schmitz, K.; Schultes, B.; Ratter, F.; Fehm, H.L.; Born, J.; Kern, W. Intranasal Insulin Improves Memory in Humans: Superiority of Insulin Aspart. Neuropsychopharmacology 2007, 32, 239–243. [Google Scholar] [CrossRef]
- Reger, M.A.; Watson, G.S.; Frey, W.H.; Baker, L.D.; Cholerton, B.; Keeling, M.L.; Belongia, D.A.; Fishel, M.A.; Plymate, S.R.; Schellenberg, G.D.; et al. Effects of Intranasal Insulin on Cognition in Memory-Impaired Older Adults: Modulation by APOE Genotype. Neurobiol. Aging 2006, 27, 451–458. [Google Scholar] [CrossRef]
- Krug, R.; Beier, L.; Lämmerhofer, M.; Hallschmid, M. Distinct and Convergent Beneficial Effects of Estrogen and Insulin on Cognitive Function in Healthy Young Men. J. Clin. Endocrinol. Metab. 2022, 107, e582–e593. [Google Scholar] [CrossRef] [PubMed]
- Brünner, Y.F.; Rodriguez-Raecke, R.; Mutic, S.; Benedict, C.; Freiherr, J. Neural Correlates of Olfactory and Visual Memory Performance in 3D-Simulated Mazes after Intranasal Insulin Application. Neurobiol. Learn. Mem. 2016, 134, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Feld, G.B.; Wilhem, I.; Benedict, C.; Rüdel, B.; Klameth, C.; Born, J.; Hallschmid, M. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation. Neuropsychopharmacology 2016, 41, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Reger, M.A.; Watson, G.S.; Green, P.S.; Wilkinson, C.W.; Baker, L.D.; Cholerton, B.; Fishel, M.A.; Plymate, S.R.; Breitner, J.C.S.; DeGroodt, W.; et al. Intranasal Insulin Improves Cognition and Modulates β-Amyloid in Early AD. Neurology 2008, 70, 440–448, Erratum in Neurology 2008, 71, 866. [Google Scholar] [CrossRef]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- Craft, S. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. Arch. Neurol. 2012, 69, 29. [Google Scholar] [CrossRef]
- Kellar, D.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal Insulin Reduces White Matter Hyperintensity Progression in Association with Improvements in Cognition and CSF Biomarker Profiles in Mild Cognitive Impairment and Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2021, 8, 240–248. [Google Scholar] [CrossRef]
- Kellar, D.; Register, T.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal Insulin Modulates Cerebrospinal Fluid Markers of Neuroinflammation in Mild Cognitive Impairment and Alzheimer’s Disease: A Randomized Trial. Sci. Rep. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Claxton, A.; Baker, L.D.; Wilkinson, C.W.; Trittschuh, E.H.; Chapman, D.; Watson, G.S.; Cholerton, B.; Plymate, S.R.; Arbuckle, M.; Craft, S. Sex and ApoE Genotype Differences in Treatment Response to Two Doses of Intranasal Insulin in Adults with Mild Cognitive Impairment or Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 35, 789–797. [Google Scholar] [CrossRef]
- Rosenbloom, M.H.; Barclay, T.R.; Pyle, M.; Owens, B.L.; Cagan, A.B.; Anderson, C.P.; Frey, W.H.; Hanson, L.R. A Single-Dose Pilot Trial of Intranasal Rapid-Acting Insulin in Apolipoprotein E4 Carriers with Mild–Moderate Alzheimer’s Disease. CNS Drugs 2014, 28, 1185–1189. [Google Scholar] [CrossRef]
- Claxton, A.; Baker, L.D.; Hanson, A.; Trittschuh, E.H.; Cholerton, B.; Morgan, A.; Callaghan, M.; Arbuckle, M.; Behl, C.; Craft, S. Long-Acting Intranasal Insulin Detemir Improves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer’s Disease Dementia. J. Alzheimer’s Dis. 2015, 44, 897–906. [Google Scholar] [CrossRef]
- Craft, S.; Claxton, A.; Baker, L.D.; Hanson, A.J.; Cholerton, B.; Trittschuh, E.H.; Dahl, D.; Caulder, E.; Neth, B.; Montine, T.J.; et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer’s Disease Biomarkers: A Pilot Clinical Trial. J. Alzheimer’s Dis. 2017, 57, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Mustapic, M.; Tran, J.; Craft, S.; Kapogiannis, D. Extracellular Vesicle Biomarkers Track Cognitive Changes Following Intranasal Insulin in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 69, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.S.; Scherer, S.C.; Ladd, K.S.; Harrison, L.C. A Randomized Controlled Trial of High-Dose Vitamin D2 Followed by Intranasal Insulin in Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 26, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Craft, S.; Raman, R.; Chow, T.W.; Rafii, M.S.; Sun, C.-K.; Rissman, R.A.; Donohue, M.C.; Brewer, J.B.; Jenkins, C.; Harless, K.; et al. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia. JAMA Neurol. 2020, 77, 1099. [Google Scholar] [CrossRef]
- Novak, P.; Pimentel Maldonado, D.A.; Novak, V. Safety and Preliminary Efficacy of Intranasal Insulin for Cognitive Impairment in Parkinson Disease and Multiple System Atrophy: A Double-Blinded Placebo-Controlled Pilot Study. PLoS ONE 2019, 14, e0214364. [Google Scholar] [CrossRef]
- Fan, X.; Copeland, P.M.; Liu, E.Y.; Chiang, E.; Freudenreich, O.; Goff, D.C.; Henderson, D.C. No Effect of Single-Dose Intranasal Insulin Treatment on Verbal Memory and Sustained Attention in Patients With Schizophrenia. J. Clin. Psychopharmacol. 2011, 31, 231–234. [Google Scholar] [CrossRef]
- Fan, X.; Liu, E.; Freudenreich, O.; Copeland, P.; Hayden, D.; Ghebremichael, M.; Cohen, B.; OngurMD, D.; Goff, D.C.; Henderson, D.C. No Effect of Adjunctive, Repeated-Dose Intranasal Insulin Treatment on Psychopathology and Cognition in Patients With Schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 226–230. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Soczynska, J.K.; Woldeyohannes, H.O.; Miranda, A.; Vaccarino, A.; MacQueen, G.; Lewis, G.F.; Kennedy, S.H. A Randomized, Double-blind, Controlled Trial Evaluating the Effect of Intranasal Insulin on Neurocognitive Function in Euthymic Patients with Bipolar Disorder. Bipolar. Disord. 2012, 14, 697–706. [Google Scholar] [CrossRef]
- Cha, D.S.; Best, M.W.; Bowie, C.R.; Gallaugher, L.A.; Woldeyohannes, H.O.; Soczynska, J.K.; Lewis, G.; MacQueen, G.; Sahakian, B.J.; Kennedy, S.H.; et al. A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial Evaluating the Effect of Intranasal Insulin on Cognition and Mood in Individuals with Treatment-Resistant Major Depressive Disorder. J. Affect. Disord. 2017, 210, 57–65. [Google Scholar] [CrossRef]
- Brünner, Y.F.; Benedict, C.; Freiherr, J. Intranasal Insulin Reduces Olfactory Sensitivity in Normosmic Humans. J. Clin. Endocrinol. Metab. 2013, 98, E1626–E1630. [Google Scholar] [CrossRef] [PubMed]
- Edwin Thanarajah, S.; Hoffstall, V.; Rigoux, L.; Hanssen, R.; Brüning, J.C.; Tittgemeyer, M. The Role of Insulin Sensitivity and Intranasally Applied Insulin on Olfactory Perception. Sci. Rep. 2019, 9, 7222. [Google Scholar] [CrossRef] [PubMed]
- Schopf, V.; Kollndorfer, K.; Pollak, M.; Mueller, C.A.; Freiherr, J. Intranasal Insulin Influences the Olfactory Performance of Patients with Smell Loss, Dependent on the Body Mass Index: A Pilot Study. Rhinol. J. 2015, 53, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, A. Effect of Intranasal Insulin on Olfactory Recovery in Patients with Hyposmia: A Randomized Clinical Trial. Otolaryngol.–Head Neck Surg. 2018, 158, 1134–1139. [Google Scholar] [CrossRef]
- Schumann, K.; Rodriguez-Raecke, R.; Sijben, R.; Freiherr, J. Elevated Insulin Levels Engage the Salience Network during Multisensory Perception. Neuroendocrinology 2024, 114, 90–106. [Google Scholar] [CrossRef]
- Sienkiewicz-Oleszkiewicz, B.; Oleszkiewicz, A.; Bock, M.A.; Hummel, T. Intranasal Insulin—Effects on the Sense of Smell. Rhinol. J. 2023, 61, 404–411. [Google Scholar] [CrossRef]
- Brabazon, F.; Bermudez, S.; Shaughness, M.; Khayrullina, G.; Byrnes, K.R. The Effects of Insulin on the Inflammatory Activity of BV2 Microglia. PLoS ONE 2018, 13, e0201878. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Hung, L.-C.; Chen, Y.-C.; Wang, W.-H.; Lin, C.-Y.; Tzeng, H.-H.; Suen, J.-L.; Chen, Y.-H. Insulin Reduces Inflammation by Regulating the Activation of the NLRP3 Inflammasome. Front. Immunol. 2021, 11, 587229. [Google Scholar] [CrossRef]
- Swarbrick, C.J.; Partridge, J.S.L. Evidence-based Strategies to Reduce the Incidence of Postoperative Delirium: A Narrative Review. Anaesthesia 2022, 77 (Suppl. 1), 92–101. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Q.; Qin, F.; Yuan, L.; Lu, Z.; Nie, H.; Gong, G. Repeated Preoperative Intranasal Administration of Insulin Decreases the Incidence of Postoperative Delirium in Elderly Patients Undergoing Laparoscopic Radical Gastrointestinal Surgery: A Randomized, Placebo-Controlled, Double-Blinded Clinical Study. Am. J. Geriatr. Psychiatry 2021, 29, 1202–1211. [Google Scholar] [CrossRef]
- Nakadate, Y.; Kawakami, A.; Oguchi, T.; Omiya, K.; Nakajima, H.; Yokomichi, H.; Sato, H.; Schricker, T.; Matsukawa, T. Safety of Intranasal Insulin Administration in Patients Undergoing Cardiovascular Surgery: An Open-Label, Nonrandomized, Dose-Escalation Study. JTCVS Open 2024, 17, 172–182. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Ren, Y.; Liu, H. Optimal Dose of Intranasal Insulin Administration for Reducing Postoperative Delirium Incidence in Older Patients Undergoing Hip Fracture Surgery. Am. J. Geriatr. Psychiatry 2025, 33, 891–900. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, L.; Long, G.; Liu, X.; Ouyang, W.; Xie, C.; He, X. Intranasal Insulin Diminishes Postoperative Delirium and Elevated Osteocalcin and Brain Derived Neurotrophic Factor in Older Patients Undergoing Joint Replacement: A Randomized, Double-Blind, Placebo-Controlled Trial. Drug Des. Devel. Ther. 2025, 19, 759–769. [Google Scholar] [CrossRef]
- Yang, M.; Lu, T.; Cao, L.; Xiao, C.; Liang, Y.; Ding, J.; Jiang, X.; Wang, W.; Chen, F.; Du, Z.; et al. Intranasal Insulin Enhances Postoperative Sleep Quality and Delirium in Middle-Aged Cardiac Surgery Patients: A Randomized Controlled Trial. Sleep Med. 2025, 132, 106560. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, X.; Lei, N.; Chen, X.; Yu, S.; Dai, X.; Shi, Q.; Gong, G.; Shu, H.-F. Effects of Intranasal Insulin Pretreatment on Preoperative Sleep Quality and Postoperative Delirium in Patients Undergoing Valve Replacement for Rheumatic Heart Disease. Nat. Sci. Sleep 2024, 16, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Spetter, M.S.; Martin, E.; Sapey, E.; Yip, K.P.; Manolopoulos, K.N.; Tahrani, A.A.; Thomas, J.M.; Lee, M.; Hallschmid, M.; et al. The Effect of Intranasal Insulin on Appetite and Mood in Women with and without Obesity: An Experimental Medicine Study. Int. J. Obes. 2022, 46, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.M.; Craft, S. The Role of Insulin in the Vascular Contributions to Age-Related Dementia. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2016, 1862, 983–991. [Google Scholar] [CrossRef]
- Akintola, A.A.; van Opstal, A.M.; Westendorp, R.G.; Postmus, I.; van der Grond, J.; van Heemst, D. Effect of Intranasally Administered Insulin on Cerebral Blood Flow and Perfusion; a Randomized Experiment in Young and Older Adults. Aging 2017, 9, 790–802. [Google Scholar] [CrossRef]
- Novak, V.; Milberg, W.; Hao, Y.; Munshi, M.; Novak, P.; Galica, A.; Manor, B.; Roberson, P.; Craft, S.; Abduljalil, A. Enhancement of Vasoreactivity and Cognition by Intranasal Insulin in Type 2 Diabetes. Diabetes Care 2014, 37, 751–759. [Google Scholar] [CrossRef]
- Schilling, T.M.; Ferreira de Sá, D.S.; Westerhausen, R.; Strelzyk, F.; Larra, M.F.; Hallschmid, M.; Savaskan, E.; Oitzl, M.S.; Busch, H.; Naumann, E.; et al. Intranasal Insulin Increases Regional Cerebral Blood Flow in the Insular Cortex in Men Independently of Cortisol Manipulation. Hum. Brain Mapp. 2014, 35, 1944–1956. [Google Scholar] [CrossRef]
- Kleinloog, J.P.D.; Mensink, R.P.; Smeets, E.T.H.C.; Ivanov, D.; Joris, P.J. Acute Inorganic Nitrate Intake Increases Regional Insulin Action in the Brain: Results of a Double-Blind, Randomized, Controlled Cross-over Trial with Abdominally Obese Men. Neuroimage Clin. 2022, 35, 103115. [Google Scholar] [CrossRef]
- Wingrove, J.O.; O’Daly, O.; Forbes, B.; Swedrowska, M.; Amiel, S.A.; Zelaya, F.O. Intranasal Insulin Administration Decreases Cerebral Blood Flow in Cortico-limbic Regions: A Neuropharmacological Imaging Study in Normal and Overweight Males. Diabetes Obes. Metab. 2021, 23, 175–185. [Google Scholar] [CrossRef]
- Kullmann, S.; Heni, M.; Veit, R.; Scheffler, K.; Machann, J.; Häring, H.-U.; Fritsche, A.; Preissl, H. Selective Insulin Resistance in Homeostatic and Cognitive Control Brain Areas in Overweight and Obese Adults. Diabetes Care 2015, 38, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.D.; Delerue, F.; Gladbach, A.; Götz, J.; Ittner, L.M. Experimental Diabetes Mellitus Exacerbates Tau Pathology in a Transgenic Mouse Model of Alzheimer’s Disease. PLoS ONE 2009, 4, e7917. [Google Scholar] [CrossRef] [PubMed]
- Lao, P.J.; Handen, B.L.; Betthauser, T.J.; Mihaila, I.; Hartley, S.L.; Cohen, A.D.; Tudorascu, D.L.; Bulova, P.D.; Lopresti, B.J.; Tumuluru, R.V.; et al. Alzheimer-Like Pattern of Hypometabolism Emerges with Elevated Amyloid-β Burden in Down Syndrome. J. Alzheimer’s Dis. 2017, 61, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, M.; Barclay, T.; Johnsen, J.; Erickson, L.; Svitak, A.; Pyle, M.; Frey, W.; Hanson, L.R. Double-Blind Placebo-Controlled Pilot Investigation of the Safety of a Single Dose of Rapid-Acting Intranasal Insulin in Down Syndrome. Drugs R D 2020, 20, 11–15. [Google Scholar] [CrossRef]
- Schmidt, H.; Kern, W.; Giese, R.; Hallschmid, M.; Enders, A. Intranasal Insulin to Improve Developmental Delay in Children with 22q13 Deletion Syndrome: An Exploratory Clinical Trial. J. Med. Genet. 2009, 46, 217–222. [Google Scholar] [CrossRef]
- Zwanenburg, R.J.; Bocca, G.; Ruiter, S.A.J.; Dillingh, J.H.; Flapper, B.C.T.; Van Den Heuvel, E.R.; Van Ravenswaaij-Arts, C.M.A. Is There an Effect of Intranasal Insulin on Development and Behaviour in Phelan-McDermid Syndrome? A Randomized, Double-Blind, Placebo-Controlled Trial. Eur. J. Hum. Genet. 2016, 24, 1696–1701. [Google Scholar] [CrossRef]
- Guthoff, M.; Grichisch, Y.; Canova, C.; Tschritter, O.; Veit, R.; Hallschmid, M.; Häring, H.U.; Preissl, H.; Hennige, A.M.; Fritsche, A. Insulin Modulates Food-Related Activity in the Central Nervous System. J. Clin. Endocrinol. Metab. 2010, 95, 748–755. [Google Scholar] [CrossRef]
- Kullmann, S.; Heni, M.; Veit, R.; Scheffler, K.; Machann, J.; Häring, H.U.; Fritsche, A.; Preissl, H. Intranasal Insulin Enhances Brain Functional Connectivity Mediating the Relationship between Adiposity and Subjective Feeling of Hunger. Sci. Rep. 2017, 7, 1627. [Google Scholar] [CrossRef]
- Hallschmid, M.; Higgs, S.; Thienel, M.; Ott, V.; Lehnert, H. Postprandial Administration of Intranasal Insulin Intensifies Satiety and Reduces Intake of Palatable Snacks in Women. Diabetes 2012, 61, 782–789. [Google Scholar] [CrossRef]
- Rodriguez-Raecke, R.; Sommer, M.; Brünner, Y.F.; Müschenich, F.S.; Sijben, R. Virtual Grocery Shopping and Cookie Consumption Following Intranasal Insulin or Placebo Application. Exp. Clin. Psychopharmacol. 2020, 28, 495–500. [Google Scholar] [CrossRef]
- Jauch-Chara, K.; Friedrich, A.; Rezmer, M.; Melchert, U.H.; Scholand-Engler, H.G.; Hallschmid, M.; Oltmanns, K.M. Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans. Diabetes 2012, 61, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, S.; Frank, S.; Heni, M.; Ketterer, C.; Veit, R.; Häring, H.U.; Fritsche, A.; Preissl, H. Intranasal Insulin Modulates Intrinsic Reward and Prefrontal Circuitry of the Human Brain in Lean Women. Neuroendocrinology 2013, 97, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Wingrove, J.; O’Daly, O.; De Lara Rubio, A.; Hill, S.; Swedroska, M.; Forbes, B.; Amiel, S.; Zelaya, F. The Influence of Insulin on Anticipation and Consummatory Reward to Food Intake: A Functional Imaging Study on Healthy Normal Weight and Overweight Subjects Employing Intranasal Insulin Delivery. Hum. Brain Mapp. 2022, 43, 5432–5451. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.S.; Begg, D.P. The Regulation of Food Intake by Insulin in the Central Nervous System. J. Neuroendocr. 2021, 33, e12952. [Google Scholar] [CrossRef]
- Wagner, L.; Veit, R.; Fritsche, L.; Häring, H.U.; Fritsche, A.; Birkenfeld, A.L.; Heni, M.; Preissl, H.; Kullmann, S. Sex Differences in Central Insulin Action: Effect of Intranasal Insulin on Neural Food Cue Reactivity in Adults with Normal Weight and Overweight. Int. J. Obes. 2022, 46, 1662–1670. [Google Scholar] [CrossRef]
- Becerra, L.A.; Gavrieli, A.; Khan, F.; Novak, P.; Lioutas, V.; Ngo, L.H.; Novak, V.; Mantzoros, C.S. Daily Intranasal Insulin at 40IU Does Not Affect Food Intake and Body Composition: A Placebo-Controlled Trial in Older Adults over a 24-Week Period with 24-Weeks of Follow-Up. Clin. Nutr. 2023, 42, 825–834. [Google Scholar] [CrossRef]
- Bohringer, A.; Schwabe, L.; Richter, S.; Schachinger, H. Intranasal Insulin Attenuates the Hypothalamic-Pituitary-Adrenal Axis Response to Psychosocial Stress. Psychoneuroendocrinology 2008, 33, 1394–1400. [Google Scholar] [CrossRef]
- Hamidovic, A.; Khafaja, M.; Brandon, V.; Anderson, J.; Ray, G.; Allan, A.M.; Burge, M.R. Reduction of Smoking Urges with Intranasal Insulin: A Randomized, Crossover, Placebo-Controlled Clinical Trial. Mol. Psychiatry 2017, 22, 1413–1421. [Google Scholar] [CrossRef]
- Ferreira de Sá, D.S.; Römer, S.; Brückner, A.H.; Issler, T.; Hauck, A.; Michael, T. Effects of Intranasal Insulin as an Enhancer of Fear Extinction: A Randomized, Double-Blind, Placebo-Controlled Experimental Study. Neuropsychopharmacology 2020, 45, 753–760. [Google Scholar] [CrossRef]
- Yom, D.Y.; Hwang, S.K.; Jon, S.G.; Ri, R. Delayed Neuropsychiatric Syndrome of Acute Carbon Monoxide Poisoning from Oak Burning Gas Cured by Therapy Combined with Transplantation of Human Umbilical Cord Blood Stem Cell, Injection of Nicholine, and Intranasal Inhalation of Insulin. Neurocase 2020, 26, 64–68. [Google Scholar] [CrossRef]
| Participants | Males | Females | Age (Years) | Insulin | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 14 healthy participants and 14 participants with type 2 of DM | 11 | 17 | 61 (mean) | regular human insulin | 40 IU (1 time/day for 2 days) | increased resting-state connectivity between the medial frontal cortex, right inferior parietal cortex, posterior cingulate gyrus, anterior cingulate cortex and hippocampal regions among subjects with diabetes increased resting-state connectivity in the medial frontal cortex, posterior cingulate gyrus and anterior cingulate cortex among healthy subjects | [17] |
| 117 healthy participants and 106 participants with type 2 of DM | 114 | 109 | 65 (mean) | regular human insulin | 40 IU (1 time/day for 24 weeks) | improved executive function composite scores (paired associates learning and spatial working memory) on- and post-treatment and verbal memory composite scores (verbal immediate free recall and immediate and delayed verbal recognition memory) post-treatment in healthy subjects | [18] |
| 38 healthy participants | 24 | 14 | 18–34 | regular human insulin | 40 IU (4 times/day for 8 weeks) | improved delayed recall of words in declarative memory-assessing word list learning task | [19] |
| 36 healthy participants | 36 | 0 | 18–35 | regular human insulin and aspart | 40 IU (4 times/day for 8 weeks) | improved delayed recall of words in declarative memory-assessing word list learning task insulin aspart displayed stronger beneficial effect than regular human insulin | [20] |
| 35 healthy participants and 26 participants with probable AD or MCI | 28 | 33 | 73–77 (mean) | regular human insulin | 20 IU or 40 IU (single dose) | both 20 IU and 40 IU improved story recalling ability among MCI-suspected participants without APOE-ε4 alleles 40 IU improved selective word reminding in Buschke Selective Reminding Test among MCI-suspected participants without APOE-ε4 alleles | [21] |
| 32 healthy participants | 32 | 0 | 18–35 | regular human insulin | 160 IU (single dose preceded by 3-day long administration of transdermal estradiol or placebo) | no beneficial effects towards divergent thinking, convergent thinking, immediate verbal recall and visuospatial memory recall insulin improved verbal recognition in groups pretreated with estradiol | [22] |
| 11 healthy participants | 11 | 0 | 25 (mean) | regular human insulin | 40 IU (single dose) | no beneficial effects towards declarative and spatial memory performance lack of altered hippocampal activity | [23] |
| 32 healthy participants | 16 | 16 | 18–30 | regular human insulin | 160 IU (single dose) | impaired acquisition of new information that interferes with already fixed memory traces | [24] |
| 24 participants with AD or MCI with amnestic features | gender structure not specified | 77–79 (mean) | regular human insulin | 20 IU (2 times/day for 3 weeks) | improved story recalling ability improved selective attention and performance speed in Stroop test improved functional status among participants with more severe baseline dementia rise in fasting Aβ40/42 ratio | [25] | |
| 104 participants with AD or MCI with amnestic features | 59 | 45 | 70–75 (mean) | regular human insulin | 10 IU or 20 IU (2 times/day for 4 months) | 10 IU improved story recalling ability 10 IU and 20 IU alleviated decline in cognition measured by DSRS and ADAS-cog 10 IU and 20 IU alleviated functional deterioration measured by ADCS-ADL scale among participants with AD 10 IU alleviated progression of hypometabolism in bilateral frontal, right temporal, bilateral occipital and right precuneus and cuneus regions 20 IU alleviated progression of hypometabolism in bilateral frontal, bilateral occipital, left parietal cortex and right precuneus and cuneus regions | [27] |
| 49 participants with AD or MCI with amnestic features | 32 | 17 | 71 (mean) | regular human insulin | 20 IU (2 times/day for 12 months) | less severe increase in white matter hyperintensities volume in frontal lobe and deep white matter regions | [28] |
| 49 participants with AD or MCI with amnestic features | 32 | 17 | 70–72 (mean) | regular human insulin | 20 IU (2 times/day for 12 months) | upregulation of IFN-γ, eotaxin and IL-2 levels in CSF downregulation of IL-6 levels in CSF | [29] |
| 104 participants with AD or MCI with amnestic features | 59 | 45 | 67–74 (mean) | regular human insulin | 10 IU or 20 IU (2 times/day for 4 months) | 10 IU improved story recalling ability among both sexes 20 IU improved story recalling ability among male participants (effect exceptionally notable in APOE-ε4 negative subgroup) 10 IU and 20 IU alleviated functional deterioration measured by ADCS-ADL scale among female participants | [30] |
| 12 participants with AD | 9 | 3 | 65–85 | glulisine | 20 IU (single dose) | improved performance in RBANS line orientation task in APOE-ε4 negative subgroup improved performance in trails B test, assessing the ability to switch subject’s attention, regardless of APOE-ε4 allel presence | [31] |
| 60 participants with AD or MCI with amnestic features | 37 | 23 | 69–75 | detemir | 10 IU or 20 IU (2 times/day for 3 weeks) | 20 IU improved verbal memory (summarized performance in immediate story recall, delayed story recall, immediate word list recall and delayed word list recall) in APOE-ε4 positive subgroup 20 IU improved verbal working memory (Dot Counting N-back) and visuospatial working memory (Benton Visual Retention Test) regardless of APOE-ε4 presence | [32] |
| 36 participants with AD or MCI with amnestic features | 17 | 19 | 67–71 (mean) | regular human insulin or detemir | 20 IU (2 times/day for 4 months) | regular human insulin improved delayed verbal memory composite score (summarized performance in delayed story recall and delayed Selective Reminding Test) regular human insulin counteracted loss of left superior parietal cortex, right middle cingulum, left cuneus and right parahippocampal gyrus volume. detemir counteracted loss of left anterior and middle cingulum volume. regular human insulin lowered tau-P181 to Aβ-42 ratio in CSF | [33] |
| 91 participants with AD or MCI with amnestic features | 35 | 56 | 70–76 (mean) | regular human insulin | 20 IU or 40 IU (2 times/day for 4 months) | positive correlation between plasma-derived, neuronal, extracellular vesicle contents of pS312-insulin receptor substrate-1 and pY-insulin receptor substrate-1 and cognitive performance measured by ADAS-cog scale among APOE-ε4 negative participants treated with 20 IU of intranasal insulin | [34] |
| 32 participants with AD | 15 | 17 | 69–80 | regular human insulin | 60 IU (4 times/day for 2 days) insulin application was preceded by 8-week-long administration of vitamin D (6000 U/day) or placebo | no significant improvement of cognitive functions | [35] |
| 240 participants with AD or MCI with amnestic features | 123 | 117 | 55–85 | regular human insulin | 20 IU (2 times/day for 12 months) | no significant improvement of cognitive functions | [36] |
| 15 participants with PD or MSA | 9 | 5 | 63 (mean) | regular human insulin | 40 IU (1 time/day for 4 weeks) | increased verbal fluency measured by total number of words given in FAS test decreased scores in the Hoehn and Yahr scale reflecting severity of parkinsonism decreased motor impairment measured by UPDRS-III scale | [37] |
| 30 participants with schizophrenia | 10 | 20 | 18–65 | regular human insulin | 40 IU (single dose) | no significant effect on cognition | [38] |
| 45 participants with schizophrenia | 36 | 9 | 18–65 | regular human insulin | 40 IU (4 times/day for 8 weeks) | no significant effect on cognition | [39] |
| 62 participants with bipolar disorder | 33 | 29 | 40 (mean) | regular human insulin | 40 IU (4 times/day for 8 weeks) | improved performance in trails B test, assessing the ability to switch subject’s attention | [40] |
| 35 participants with TRMDD | 13 | 22 | 18–65 | regular human insulin | 40 IU (4 times/day for 4 weeks) | no significant effect on cognition | [41] |
| Participants | Males | Females | Age (Years) | Insulin | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 17 healthy participants | 10 | 7 | 24.5 (mean) | regular human insulin | 40 IU (single dose) | decreased sensitivity to detect the n-butanol odorant | [42] |
| 36 healthy participants | 36 | 0 | 25.5 (mean) | regular human insulin | 40, 100 or 160 IU (single dose) | improved odor sensitivity measured by Sniffin’ Sticks test battery doses of 100 IU and 160 IU displayed stronger beneficial effect | [43] |
| 10 participants with post-infectious olfactory loss | 7 | 3 | 22–56 | regular human insulin | 40 IU (single dose) | improved odor sensitivity and discrimination ability measured by Sniffin’ Sticks test battery decreased odor identification ability measured by Sniffin’ Sticks test battery | [44] |
| 38 participants with hyposmia | 20 | 18 | 18–70 | regular human insulin | 40 IU (2 times/week for 4 weeks) | decreased severity of hyposmia measured by CCCRC test | [45] |
| 26 healthy participants | 26 | 0 | 19–31 | regular human insulin | 40 IU (single dose) | increased activation of mediodorsal thalamus, anterior cingulate cortex, postcentral gyrus, posterior cingulate gyrus, precentral gyrus, supramarginal gyrus, insula and caudate nucleus in response to visual and olfactory stimuli | [46] |
| Participants | Males | Females | Age (Years) | Insulin Type | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 80 participants undergoing laparoscopic radical excision of gastrointestinal tumor | 46 | 24 | 65–70 | regular human insulin | 20 IU (2 times/day for 2 days preceding the surgery and 1 final dose applied 10 min before anesthesia induction) | decreased incidence of POD within 5 days after surgery decreased serum levels of TNF-α, IL-6 and IL-1β | [51] |
| 27 participants undergoing cardiac or major vascular surgery | 20 | 7 | 62–75 (mean) | regular human insulin | 40, 80, 160 or 240 IU (single dose during anesthesia) | 2 cases of hypoglycemia among subjects receiving 240 IU of intranasal insulin lack of statistically significant alterations in serum TNF-α, IL-6 and IL-1β levels | [52] |
| 130 participants undergoing unilateral hip arthroplasty or closed reduction and intramedullary nailing | 37 | 93 | 72–87 | regular human insulin | 20 or 40 IU (3 doses in total, first—the day before surgery, second—50 min before anesthesia, third—in the evening after surgery) | decreased incidence of POD within 3 days after surgery (stronger but not statistically significant tendency in 20 IU-treated group) increased glucose levels in CSF in 40 IU-treated group) lack of statistically significant alterations in lactate levels in CSF and plasma glucose | [53] |
| 195 participants undergoing elective joint replacement surgery | 50 | 145 | 73 (mean) | detemir | 40 IU (2 times/day for 3 days preceding the surgery and 5 days after surgery) | decreased incidence of POD within 5 days after surgery lower severity of POD occurring in the insulin-treated group (measured by DRS-98 scale) increased ucOC, tOC, BDNF and glucose levels in CSF increased tOC levels in plasma | [54] |
| 76 participants undergoing elective CBP surgery | 29 | 42 | 45–65 | regular human insulin | 20 IU (1 time/day for 3 days, first dose—1 h before surgery, second and third dose—postoperative days 1 and 2) | decreased incidence of POD within 4 days after surgery decreased deterioration of perioperative MMSE test results improved sleep efficiency and total sleep time on postoperative day 1 | [55] |
| 76 participants undergoing valve surgery with cardiopulmonary bypass for rheumatic heart disease | 26 | 50 | 16–65 | regular human insulin | 20 IU (2 times/day for 2 days preceding the surgery and 1 final dose applied 10 min before anesthesia induction) | decreased incidence of POD and lower scores in CAM-CR within 3 days after surgery decreased PSOI scores, light sleep ratio and number of awakenings increased higher deep sleep ratio, REM sleep ratio, deep sleep continuity score, and total sleep quality score decreased serum cortisol level before surgery and anesthesia | [56] |
| Participants | Males | Females | Age (Years) | Insulin Type | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 38 healthy participants | 24 | 14 | 18–34 | regular human insulin | 40 IU (4 times/day for 8 weeks) | improved emotional state and self-assurance reduced self-reported anger levels | [19] |
| 35 participants with TRMDD | 13 | 22 | 18–65 | regular human insulin | 40 IU (4 times/day for 4 weeks) | no significant impact on mood | [41] |
| 17 obese participants | 0 | 17 | 26 (mean) | regular human insulin | 160 IU (single dose) | mood improvement revealed by scores of PANAS questionnaire | [57] |
| Participants | Males | Females | Age (Years) | Insulin | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 19 healthy participants | 19 | 0 | 20–69 | regular human insulin | 40 IU (single dose) | increased blood flow through occipital grey matter and thalamus area among older participants (≥60 years old) | [59] |
| 14 healthy participants and 15 participants with DM | 12 | 17 | 60 (mean) | regular human insulin | 40 IU (single dose) | increased blood flow in the right insula in all subjects | [60] |
| 48 healthy participants | 48 | 0 | 23 (mean) | regular human insulin | 40 IU (single dose) + 10 mg of cortisol (1 dose every 15 min up to 3 doses total) | increased blood flow in the insula region lack of significant distinctions between groups receiving sole insulin or insulin + cortisol | [61] |
| 18 abdominally obese participants | 18 | 0 | 18–60 | regular human insulin | 160 IU (single dose administered 165–195 min after application of 625 mg of potassium nitrate) | increased blood flow in putamen, amygdala, accumbens, pallidum and temporal, frontal and parietal lobes in subjects receiving insulin + potassium nitrate (comparison with subjects receiving sole insulin) increased blood flow in putamen, caudate, thalamus and occipital and parietal lobe in subjects receiving insulin decreased blood flow in temporal and frontal lobe | [62] |
| 12 healthy participants and 14 overweight participants | 26 | 0 | 26 (mean) | regular human insulin | 160 IU (single dose) | decreased blood flow in the hippocampus, insula and cerebral cortex among overweight participants | [63] |
| 25 healthy participants and 23 overweight/obese participants | 27 | 21 | 26 (mean) | regular human insulin | 160 IU (single dose) | decreased blood flow in the hypothalamus in both groups of subjects decreased blood flow in the prefrontal cortex in slim individuals | [64] |
| Participants | Males | Females | Age (Years) | Insulin Type | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 12 participants with Down syndrome | 6 | 6 | 35–53 | glulisine | 20 IU (single dose) | non-significant trend toward improved memory retention | [67] |
| 6 participants with 22q13 deletion syndrome | 2 | 4 | 1.5–9.5 | regular human insulin | 1 dose/day for 12 months (dosage increased gradually at 3-day intervals starting at 2 IU/day and reaching final values of 0.5–1.5 IU/kg/day) | after six weeks: 4 children demonstrated significant progress in motor control, attention span, and behavioral regulation after 12 months: 4 children showed sustained improvements in motor functions, speech understanding, communication, attention span, and daily autonomy | [68] |
| 25 participants with 22q13 deletion syndrome | 6 | 19 | 1–16 | regular human insulin | 20 IU (children 1–3 years old) 30 IU (children 3–9 years old) 40 IU (children 9–18 years old) complete daily dose was divided into 2 smaller doses/day; treatment period lasted 18 months | provided additional developmental gains of cognition, receptive language, and fine motor skills children > 36 months showed more pronounced improvements in cognition and social skills, while the control group showed developmental decline | [69] |
| Participants | Males | Females | Age (Years) | Insulin Type | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 52 healthy female participants (35 lean, 17 obese) | 0 | 52 | 22–28 | regular human insulin | 160 IU (16 doses of 10 IU in 30 s intervals) | reduced appetite and cookie intake in obese women increased left insula activation for food vs. non-food pictures in both lean and obese participants | [57] |
| 48 healthy participants (25 lean, 23 overweight or obese) | 27 | 21 | 26 (mean) | regular human insulin | 160 IU (single dose) | reduced desire for sweet foods in lean men | [64] |
| 9 healthy participants | 5 | 4 | 25 (mean) | regular human insulin | 160 IU (4 doses of 40 IU administered within 5 min) | reduced brain activity in response to food pictures (but not nonfood pictures) in several regions: right and left fusiform gyrus, right hippocampus, right temporal superior cortex, right frontal middle cortex, and left postcentral cortex | [70] |
| 47 healthy participants (25 lean, 10 overweight, 12 obese) | 26 | 21 | 26 (mean) | regular human insulin | 160 IU (single dose) | improved functional connectivity between prefrontal regions of the default-mode network and both hippocampus and hypothalamus improved connectivity between: -dorsal/anterior medial prefrontal cortex and right hippocampus -anterior medial prefrontal cortex and hypothalamus (only in peripherally insulin-sensitive individuals | [71] |
| 30 female participants taking oral contraceptives | 0 | 30 | 22–23 (mean) | regular human insulin | 160 IU (16 doses of 10 IU administered at 60 s intervals) | postprandial intranasal insulin administration reduced appetite ratings and decreased intake of chocolate chip cookies (the most palatable snack) by approximately 32% compared to placebo the reduction was selective for highly palatable foods, with no effect on less rewarding snacks (spritz or coconut cookies) | [72] |
| 30 healthy male participants | 30 | 0 | 26 (mean) | regular human insulin | 40 IU (single dose) | no significant effect on food ratings, calorie content of purchased food products, and cookie consumption | [73] |
| 15 healthy male participants | 15 | 0 | 25 (mean) | regular human insulin | 40 IU (4 doses of 10 IU administered at 60 s intervals) | increased brain energy metabolism and ATP levels reduced food consumption and calorie intake (particularly from carbohydrates and protein) strong inverse relationship between brain energy levels and food consumption | [74] |
| 17 healthy lean female participants | 0 | 17 | 24.5 (mean) | regular human insulin | 160 IU (4 doses of 40 IU administered within 5 min) | decreased activity and fALFF in hypothalamus and orbitofrontal cortex increased fALFF induction (positively correlating with BMI values) in prefrontal cortex at 30 min after insulin application and anterior cingulate cortex at 90 min after application | [75] |
| 24 healthy male participants (10 lean, 14 overweight) | 24 | 0 | 26 (mean) | regular human insulin | 160 IU (4 doses of 40 IU administered within 5 min) | increased activity of anterior cingulate cortex, ventromedial prefrontal cortex and nucleus accumbens in lean participants for sweet cue anticipation lower activation of amygdala during stevia receipt in lean participants | [76] |
| 60 healthy participants (37 lean, 23 overweight or obese) | 30 | 30 | 21–69 | regular human insulin | 160 IU (4 doses of 40 IU administered within 4 min) | BOLD activation of amygdala to food cues increased activity of insula in lean men and overweight women (insula response correlated with peripheral insulin sensitivity and cognitive restraint) increased activity in women and decreased activity in men of dorsolateral prefrontal cortex for highly desired food cues reduced hunger (especially for lean mean and overweight women) increased desire for low-caloric foods | [78] |
| 89 participants (51 healthy, 38 with type 2 of DM) | 47 | 42 | 50–85 | regular human insulin | 40 IU (1 dose/day for 24 weeks) | no significant effect on appetite, hunger, food intake or any of the secondary outcomes (anthropometric measures including body weight and body composition) | [79] |
| Participants | Males | Females | Age (Years) | Insulin Type | Applied Dose | Results | Ref. |
|---|---|---|---|---|---|---|---|
| 26 healthy male participants | 26 | 0 | 20–31 | regular human insulin | 40 IU (single dose) | decreased blood plasma and saliva cortisol levels | [80] |
| 37 healthy smokers | 27 | 10 | 18–65 | regular human insulin | 60 IU (single dose) following overnight abstinence from nicotine | reduced nicotine cravings over time, effect lasted through psychosocial stress period (100 min post-administration) stress response normalization: significantly increased peak cortisol levels following stress normalized the typically blunted cortisol response to stress seen in smokers no effect on cardiovascular stress measures (HR, BP) | [81] |
| 123 healthy participants | 60 | 63 | 18–35 | regular human insulin | 160 IU (single dose) | decreased fear-potentiated startle decreased SCR to fear in women participants significant over-time decay of US expectancy | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabarczyk, M.; Szychowska, A.; Kozłowski, S.; Sipowicz, K.; Pietras, T.; Kosmalski, M.; Różycka-Kosmalska, M. Intranasally Administered Insulin as Neuromodulating Factor and Medication in Treatment of Neuropsychiatric Disorders—Current Findings from Clinical Trials. Sci. Pharm. 2025, 93, 52. https://doi.org/10.3390/scipharm93040052
Grabarczyk M, Szychowska A, Kozłowski S, Sipowicz K, Pietras T, Kosmalski M, Różycka-Kosmalska M. Intranasally Administered Insulin as Neuromodulating Factor and Medication in Treatment of Neuropsychiatric Disorders—Current Findings from Clinical Trials. Scientia Pharmaceutica. 2025; 93(4):52. https://doi.org/10.3390/scipharm93040052
Chicago/Turabian StyleGrabarczyk, Mikołaj, Aleksandra Szychowska, Sebastian Kozłowski, Kasper Sipowicz, Tadeusz Pietras, Marcin Kosmalski, and Monika Różycka-Kosmalska. 2025. "Intranasally Administered Insulin as Neuromodulating Factor and Medication in Treatment of Neuropsychiatric Disorders—Current Findings from Clinical Trials" Scientia Pharmaceutica 93, no. 4: 52. https://doi.org/10.3390/scipharm93040052
APA StyleGrabarczyk, M., Szychowska, A., Kozłowski, S., Sipowicz, K., Pietras, T., Kosmalski, M., & Różycka-Kosmalska, M. (2025). Intranasally Administered Insulin as Neuromodulating Factor and Medication in Treatment of Neuropsychiatric Disorders—Current Findings from Clinical Trials. Scientia Pharmaceutica, 93(4), 52. https://doi.org/10.3390/scipharm93040052

