Study of the Flowability Properties, Morphology and Microstructure of Hazelnut (Corylus avellana L.) Shell Waste Particles Obtained by Milling
Abstract
1. Introduction
2. Results and Discussion
2.1. Particle Size Distribution (PSD) of Milled Hazelnut Shell Samples
2.2. Flowability Parameters of Particulate Samples from Hazelnut Shells
2.3. Morphological Analysis of Particles by Image Analysis
2.4. Microstructural Analysis of the Particles by SEM
2.5. Distribution of the Biomolecules That Compose Hazelnut Shell Particles
2.6. Evaluation of Roughness and Ultrastructure Cellular of the Hazelnut Shell Particles
3. Materials and Methods
3.1. Plant Material and Milling Experiments
3.2. Particle Size Distribution by Sieving Methodology
3.3. Determination of Flowability Parameters
3.4. Evaluation of Size and Shape Parameters by Image Analysis
3.5. Scanning Electron Microscopy (SEM)
3.6. Confocal Laser Scanning Microscopy (CLSM)
3.7. Atomic Force Microscopy (AFM)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PSD | Particle size distribution |
| SEM | Scanning electron microscopy |
| AFM | Atomic force microscopy |
| CLSM | Confocal laser scanning microscopy |
| CI | Carr index |
| HR | Hausner ratio |
| AOR | Angle of repose |
References
- Barczewski, M.; Sałasińska, K.; Szulc, J. Application of Sunflower Husk, Hazelnut Shell and Walnut Shell as Waste Agricultural Fillers for Epoxy-Based Composites: A Study into Mechanical Behavior Related to Structural and Rheological Properties. Polym. Test. 2019, 75, 1–11. [Google Scholar] [CrossRef]
- Jan, K.; Riar, C.S.; Saxena, D.C. Characterization of Agro-Industrial Byproducts and Wastes for Sustainable Industrial Application. J. Food Meas. Charact. 2017, 11, 1254–1265. [Google Scholar] [CrossRef]
- McNeill, D.C.; Pal, A.K.; Nath, D.; Rodriguez-Uribe, A.; Mohanty, A.K.; Pilla, S.; Gregori, S.; Dick, P.; Misra, M. Upcycling of Ligno-Cellulosic Nutshells Waste Biomass in Biodegradable Plastic-Based Biocomposites Uses—A Comprehensive Review. Compos. Part C Open Access 2024, 14, 100478. [Google Scholar] [CrossRef]
- Aguado-González, L.; Sierra-Pérez, J.; Forte, C.; López-Forniés, I.; Blanc, S. Cascade Valorization of Hazelnut Industry By-Products for Industrial Use through Co-Creative Processes. J. Clean. Prod. 2025, 494, 144989. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Michele, A.D. Multipurpose Plant Species and Circular Economy: Corylus avellana L. as a Study Case. Front. Biosci. Landmark 2022, 27, 11. [Google Scholar] [CrossRef]
- Huss, J.C.; Antreich, S.J.; Bachmayr, J.; Xiao, N.; Eder, M.; Konnerth, J.; Gierlinger, N. Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. Adv. Mater. 2020, 32, 2004519. [Google Scholar] [CrossRef]
- Agilee, N.; Spasojević, T.; Delić, M.; Ogrizović, Đ.; Gria, I.R.; Prlainović, N.; Đolić, M. Hazelnut Shells as a Tenable Biosorbent for Basic Red 18 Azo Dye Removal. Separations 2024, 11, 343. [Google Scholar] [CrossRef]
- Balci, S.; Doǧu, T.; Yücel, H. Characterization of Activated Carbon Produced from Almond Shell and Hazelnut Shell. J. Chem. Technol. Biotechnol. 1994, 60, 419–426. [Google Scholar] [CrossRef]
- Şencan, A.; Karaboyacı, M.; Kılıç, M. Determination of Lead(II) Sorption Capacity of Hazelnut Shell and Activated Carbon Obtained from Hazelnut Shell Activated with ZnCl2. Environ. Sci. Pollut. Res. 2015, 22, 3238–3248. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Fathi, M.; Ghoddusi, H.B. Pickering Emulsions Stabilized by Cellulose Nanocrystals Extracted from Hazelnut Shells: Production and Stability under Different Harsh Conditions. Int. J. Biol. Macromol. 2024, 258, 128982. [Google Scholar] [CrossRef]
- Aliotta, L.; Vannozzi, A.; Bonacchi, D.; Coltelli, M.-B.; Lazzeri, A. Analysis, Development, and Scaling-Up of Poly(Lactic Acid) (PLA) Biocomposites with Hazelnuts Shell Powder (HSP). Polymers 2021, 13, 4080. [Google Scholar] [CrossRef]
- Hebda, T.; Brzychczyk, B.; Francik, S.; Pedryc, N. Evaluation of Suitability of Hazelnut Shell Energy for Production of Biofuels. Eng. Rural Dev. 2018, 17, 1860–1865. [Google Scholar]
- Tareq Noaman, A.; Abed, M.S.; Al-Gebory, L.; Al-Zubaidi, A.B.; Al-Tabbakh, A.A. Production of Agro-Waste Cement Composites: Influence of Nutshells on Mechanical and Hardened Properties. Constr. Build. Mater. 2023, 394, 132137. [Google Scholar] [CrossRef]
- Martínez, B.G. Materiales Avanzados y Nanomateriales: Aprovechamiento de Fuentes Naturales y Sus Beneficios al Medio Ambiente, 1st ed.; Universidad Autónoma del Estado de México, Vigueras Santiago, E., Eds.; OmniaScience: Barcelona, Spain, 2022; ISBN 978-84-123480-3-3. [Google Scholar]
- Sitotaw, Y.W.; Habtu, N.G.; Gebreyohannes, A.Y.; Nunes, S.P.; Van Gerven, T. Ball Milling as an Important Pretreatment Technique in Lignocellulose Biorefineries: A Review. Biomass Convers. Biorefinery 2023, 13, 15593–15616. [Google Scholar] [CrossRef]
- Gorrasi, G.; Sorrentino, A. Mechanical Milling as a Technology to Produce Structural and Functional Bio-Nanocomposites. Green Chem. 2015, 17, 2610–2625. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Baykan, A.; Yaman, S.; Kucukbayrak, S. Effects of Fragmentation and Particle Size on the Fuel Properties of Hazelnut Shells. Fuel 2013, 112, 326–330. [Google Scholar] [CrossRef]
- Hemmati, N.; Sheikhmozafari, M.J.; Taban, E.; Tajik, L.; Faridan, M. Pistachio Shell Waste as a Sustainable Sound Absorber: An Experimental and Empirical Investigation. Int. J. Environ. Sci. Technol. 2024, 21, 4867–4880. [Google Scholar] [CrossRef]
- Tahmaz, J.; Begić, M.; Oručević Žuljević, S.; Mehmedović, V.; Alkić-Subašić, M.; Jurković, J.; Djulanćić, N. Physical Properties of Vegetable Food Seasoning Powders. In 10th Central European Congress on Food; Brka, M., Sarić, Z., Oručević Žuljević, S., Omanović-Mikličanin, E., Taljić, I., Biber, L., Mujčinović, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 14–32. [Google Scholar]
- Traina, K.; Cloots, R.; Bontempi, S.; Lumay, G.; Vandewalle, N.; Boschini, F. Flow Abilities of Powders and Granular Materials Evidenced from Dynamical Tap Density Measurement. Powder Technol. 2013, 235, 842–852. [Google Scholar] [CrossRef]
- Düsenberg, B.; Schmidt, J.; Sensoy, I.; Bück, A. Flowability of Plant Based Food Powders: Almond, Chestnut, Chickpea, Coconut, Hazelnut and Rice. J. Food Eng. 2023, 357, 111606. [Google Scholar] [CrossRef]
- Shah, D.S.; Moravkar, K.K.; Jha, D.K.; Lonkar, V.; Amin, P.D.; Chalikwar, S.S. A Concise Summary of Powder Processing Methodologies for Flow Enhancement. Heliyon 2023, 9, e16498. [Google Scholar] [CrossRef]
- Kaleem, M.A.; Alam, M.Z.; Khan, M.; Jaffery, S.H.I.; Rashid, B. An Experimental Investigation on Accuracy of Hausner Ratio and Carr Index of Powders in Additive Manufacturing Processes. Met. Powder Rep. 2021, 76, S50–S54. [Google Scholar] [CrossRef]
- Tao, S.; Khanizadeh, S.; Zhang, H.; Zhang, S. Anatomy, Ultrastructure and Lignin Distribution of Stone Cells in Two Pyrus Species. Plant Sci. 2009, 176, 413–419. [Google Scholar] [CrossRef]
- Zamil, M.S.; Geitmann, A. The Middle Lamella—More than a Glue. Phys. Biol. 2017, 14, 015004. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Carrillo, J.G.; Zhai, C.; Gamboa, R.A.; Gan, Y.; Shen, L. Microstructure and Mechanical Properties of Hard Acrocomia Mexicana Fruit Shell. Sci. Rep. 2018, 8, 9668. [Google Scholar] [CrossRef]
- Bogolitsyn, K.G.; Zubov, I.N.; Gusakova, M.A.; Chukhchin, D.G.; Krasikova, A.A. Juniper Wood Structure under the Microscope. Planta 2015, 241, 1231–1239. [Google Scholar] [CrossRef]
- Xiao, N.; Felhofer, M.; Antreich, S.J.; Huss, J.C.; Mayer, K.; Singh, A.; Bock, P.; Gierlinger, N. Twist and Lock: Nutshell Structures for High Strength and Energy Absorption. R. Soc. Open Sci. 2021, 8, 210399. [Google Scholar] [CrossRef]
- Nicolás-Bermúdez, J.; Arzate-Vázquez, I.; Chanona-Pérez, J.J.; Méndez-Méndez, J.V.; Perea-Flores, M.J.; Rodríguez-Castro, G.A.; Domínguez-Fernández, R.N. Characterization of the Hierarchical Architecture and Micromechanical Properties of Walnut Shell (Juglans regia L.). J. Mech. Behav. Biomed. Mater. 2022, 130, 105190. [Google Scholar] [CrossRef]
- Wang, X.; Leng, W.; Nayanathara, R.M.O.; Milsted, D.; Eberhardt, T.L.; Zhang, Z.; Zhang, X. Recent Advances in Transforming Agricultural Biorefinery Lignins into Value-Added Products. J. Agric. Food Res. 2023, 12, 100545. [Google Scholar] [CrossRef]
- Balasundar, P.; Narayanasamy, P.; Senthil, S.; Abdullah Al-Dhabi, N.; Prithivirajan, R.; Shyam Kumar, R.; Ramkumar, T.; Subrahmanya Bhat, K. Physico-Chemical Study of Pistachio (Pistacia Vera) Nutshell Particles as a Bio-Filler for Eco-Friendly Composites. Mater. Res. Express 2019, 6, 105339. [Google Scholar] [CrossRef]
- Bond, J.; Donaldson, L.; Hill, S.; Hitchcock, K. Safranine Fluorescent Staining of Wood Cell Walls. Biotech. Histochem. 2008, 83, 161–171. [Google Scholar] [CrossRef]





| Milling Time (Minutes) | Parameters of Granulometry | ||
|---|---|---|---|
| Average Particle Size, Dmean (µm) | Standard Deviation, σ (µm) | Span (Dimensionless) | |
| 0.5 | 615.98 ± 29.72 a | 768.68 ± 26.17 a | 2.91 ± 0.09 b |
| 1 | 390.31 ± 14.01 b | 368.00 ± 10.84 b | 3.23 ± 0.14 a |
| 1.5 | 281.58 ± 11.20 c | 316.78 ± 71.27 b | 2.86 ± 0.07 b |
| Standard Sieve No. | Apparent Density, ρA (g/cm3) | Tapped Density, ρT (g/cm3) | Carr Index, CI (%) | Hausner Ratio, HR | Angle of Repose, AOR (°) | Flow Character of Powders |
|---|---|---|---|---|---|---|
| Sieve25 | 0.65 ± 0.01 a | 0.72 ± 0.03 c | 10.33 ± 4.16 df | 1.11 ± 0.05 c | 23.86 ± 3.64 d | Excellent |
| Sieve50 | 0.59 ± 0.01 ab | 0.71 ± 0.01 c | 17.34 ± 3.21 ef | 1.21 ± 0.04 c | 32.31 ± 1.36 c | Fair |
| Sieve100 | 0.51 ± 0.02 ab | 0.74 ± 0.07 c | 30.33 ± 9.07 ce | 1.45 ± 0.19 c | 33.34 ± 2.05 c | Poor |
| Sieve200 | 0.46 ± 0.01 ab | 0.71 ± 0.05 c | 35.00 ± 6.24 c | 1.54 ± 0.14 b | 36.17 ± 0.46 bc | Very poor |
| Sieve400 | 0.43 ± 0.02 ab | 1.01 ± 0.10 b | 56.66 ± 6.65 b | 2.34 ± 0.33 b | 39.74 ± 1.31 b | No flow |
| Residue | 0.39 ± 0.01 b | 1.89 ± 0.09 a | 79.33 ± 1.52 a | 4.85 ± 0.36 a | 48.64 ± 0.43 a | No flow |
| Standard Sieve No. | Number of Data | Size Parameters | Morphological Parameters (Dimensionless) | ||||
|---|---|---|---|---|---|---|---|
| Area (μm2) | Perimeter (μm) | Feret’s Diameter (μm) | Circularity | Aspect Ratio | Roundness | ||
| Sieve25 | 50 | 720,152 ± 103,873 | 3623 ± 429 | 1191 ± 181 | 0.70 ± 0.09 | 1.29 ± 0.15 | 0.78 ± 0.09 |
| Sieve50 | 64 | 154,134 ± 104,302 | 1631 ± 568 | 516 ± 177 | 0.66 ± 0.07 | 1.36 ± 0.22 | 0.75 ± 0.11 |
| Sieve100 | 78 | 50,849 ± 33,631 | 953 ± 348 | 311 ± 118 | 0.67 ± 0.08 | 1.43 ± 0.38 | 0.73 ± 0.14 |
| Sieve200 | 201 | 11,856 ± 5439 | 456 ± 119 | 155 ± 40 | 0.66 ± 0.08 | 1.49 ± 0.37 | 0.70 ± 0.14 |
| Sieve400 | 3946 | 293 ± 93 | 76.72 ± 19.28 | 27.57 ± 6.18 | 0.64 ± 0.17 | 1.75 ± 0.67 | 0.62 ± 0.15 |
| Residue | 4152 | 53.28 ± 45.52 | 26.66 ± 12.64 | 10.63 ± 4.64 | 0.83 ± 0.12 | 1.69 ± 0.53 | 0.63 ± 0.15 |
| No. of Classes | Standard Sieve No. | Nomenclature Used in This Study | Minimum Diameter Dmin (µm) (Sieve Opening) | Maximum Diameter, Dmax (µm) | Average Class Size Di (µm) |
|---|---|---|---|---|---|
| 1 | 25 | Sieve25 | 710 | 1700 * | 1205 |
| 2 | 50 | Sieve50 | 300 | 710 | 505 |
| 3 | 100 | Sieve100 | 150 | 300 | 225 |
| 4 | 200 | Sieve200 | 75 | 150 | 112.5 |
| 5 | 400 | Sieve400 | 38 | 75 | 56.5 |
| 6 | Residue | Residue | 20 * | ≤38 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Arzate-Vázquez, I.; Méndez-Méndez, J.V.; Domínguez-Fernández, R.N.; Gómez-Patiño, M.B.; Arrieta-Baez, D.; Chanona-Pérez, J.J.; Vélez-Rivera, N.; Rodríguez-Castro, G.A. Study of the Flowability Properties, Morphology and Microstructure of Hazelnut (Corylus avellana L.) Shell Waste Particles Obtained by Milling. Recycling 2026, 11, 3. https://doi.org/10.3390/recycling11010003
Arzate-Vázquez I, Méndez-Méndez JV, Domínguez-Fernández RN, Gómez-Patiño MB, Arrieta-Baez D, Chanona-Pérez JJ, Vélez-Rivera N, Rodríguez-Castro GA. Study of the Flowability Properties, Morphology and Microstructure of Hazelnut (Corylus avellana L.) Shell Waste Particles Obtained by Milling. Recycling. 2026; 11(1):3. https://doi.org/10.3390/recycling11010003
Chicago/Turabian StyleArzate-Vázquez, Israel, Juan Vicente Méndez-Méndez, Ruth Nohemí Domínguez-Fernández, Mayra Beatriz Gómez-Patiño, Daniel Arrieta-Baez, José Jorge Chanona-Pérez, Nayeli Vélez-Rivera, and Germán Anibal Rodríguez-Castro. 2026. "Study of the Flowability Properties, Morphology and Microstructure of Hazelnut (Corylus avellana L.) Shell Waste Particles Obtained by Milling" Recycling 11, no. 1: 3. https://doi.org/10.3390/recycling11010003
APA StyleArzate-Vázquez, I., Méndez-Méndez, J. V., Domínguez-Fernández, R. N., Gómez-Patiño, M. B., Arrieta-Baez, D., Chanona-Pérez, J. J., Vélez-Rivera, N., & Rodríguez-Castro, G. A. (2026). Study of the Flowability Properties, Morphology and Microstructure of Hazelnut (Corylus avellana L.) Shell Waste Particles Obtained by Milling. Recycling, 11(1), 3. https://doi.org/10.3390/recycling11010003

