Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides
Abstract
1. Introduction
2. Secondary Sources of Lithium and Other Metals
2.1. Spent Lithium-Ion Batteries (LIBs)
2.2. Waste Electrical and Electronic Equipment (WEEE)
3. Microorganisms in Lithium and Other Metals Recovery
3.1. Bioleaching Microorganisms
3.2. Bioleaching Methods
3.3. Bioleaching Mechanisms
4. Biotechnological Approaches for Metal Recovery
4.1. Bioaccumulation
4.2. Biosorption
Cell Surface Display as an Enhanced Biosorption Strategy
5. Metal-Binding Peptides for Metal Recovery
6. Challenges and Future Perspectives for Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-Based Technologies for Lithium Recovery from Water Lithium Resources: A Review. J. Memb. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Choubey, P.K.; Kim, M.S.; Srivastava, R.R.; Lee, J.C.; Lee, J.Y. Advance Review on the Exploitation of the Prominent Energy-Storage Element: Lithium. Part I: From Mineral and Brine Resources. Miner. Eng. 2016, 89, 119–137. [Google Scholar] [CrossRef]
- Roy, J.J.; Madhavi, S.; Cao, B. Metal Extraction from Spent Lithium-Ion Batteries (LIBs) at High Pulp Density by Environmentally Friendly Bioleaching Process. J. Clean. Prod. 2021, 280, 124242. [Google Scholar] [CrossRef]
- Selvamani, V.; Jeong, J.; Maruthamuthu, M.K.; Arulsamy, K.; Na, J.G.; Hong, S.H. Construction of the Lithium Binding Peptide Displayed Recombinant Escherichia coli for the Specific Lithium Removal from Various Metal Polluted Wastewater. J. Environ. Chem. Eng. 2023, 11, 109029. [Google Scholar] [CrossRef]
- Etude, M.C.; Ikeuba, A.I.; Njoku, C.N.; Yakubu, E.; Uzoma, H.C.; Mgbemere, C.E.; Udunwa, D.I. Recycling Lithium-Ion Batteries: A Review of Current Status and Future Directions. Sustain. Chem. One World 2024, 4, 100027. [Google Scholar] [CrossRef]
- Moazzam, P.; Boroumand, Y.; Rabiei, P.; Baghbaderani, S.S.; Mokarian, P.; Mohagheghian, F.; Mohammed, L.J.; Razmjou, A. Lithium Bioleaching: An Emerging Approach for the Recovery of Li from Spent Lithium Ion Batteries. Chemosphere 2021, 277, 130196. [Google Scholar] [CrossRef] [PubMed]
- Boxall, N.J.; Cheng, K.Y.; Bruckard, W.; Kaksonen, A.H. Application of Indirect Non-Contact Bioleaching for Extracting Metals from Waste Lithium-Ion Batteries. J. Hazard Mater. 2018, 360, 504–511. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Recovery of Valuable Metals from Spent Lithium-Ion Batteries Using Microbial Agents for Bioleaching: A Review. Front. Microbiol. 2023, 14, 1197081. [Google Scholar] [CrossRef]
- Gavrilescu, M. Microbial Recovery of Critical Metals from Secondary Sources. Bioresour. Technol. 2022, 344, 126208. [Google Scholar] [CrossRef] [PubMed]
- Maruthamuthu, M.K.; Selvamani, V.; Nadarajan, S.P.; Yun, H.; Oh, Y.K.; Eom, G.T.; Hong, S.H. Manganese and Cobalt Recovery by Surface Display of Metal Binding Peptide on Various Loops of OmpC in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2018, 45, 31–41. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of Iron Magnetic Nanoparticles in Protein Immobilization. Molecules 2014, 19, 11465–11486. [Google Scholar] [CrossRef]
- Jeong, J.; Selvamani, V.; Maruthamuthu, M.K.; Arulsamy, K.; Hong, S.H. Application of the Surface Engineered Recombinant Escherichia coli to the Industrial Battery Waste Solution for Lithium Recovery. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae012. [Google Scholar] [CrossRef]
- Secretaría de Economía. Dirección General de Desarrollo Minero Perfil Del Mercado Del Litio 2021. Available online: https://www.gob.mx/cms/uploads/attachment/file/692315/15._Perfil_Litio_2021__T_.pdf (accessed on 20 November 2025).
- Heydarian, A.; Mousavi, S.M.; Vakilchap, F.; Baniasadi, M. Application of a Mixed Culture of Adapted Acidophilic Bacteria in Two-Step Bioleaching of Spent Lithium-Ion Laptop Batteries. J. Power Sources 2018, 378, 19–30. [Google Scholar] [CrossRef]
- Biswal, B.K.; Jadhav, U.U.; Madhaiyan, M.; Ji, L.; Yang, E.H.; Cao, B. Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12343–12352. [Google Scholar] [CrossRef]
- Domingues, A.M.; de Souza, R.G. Review of Life Cycle Assessment on Lithium-Ion Batteries (LIBs) Recycling. Next Sustain. 2024, 3, 100032. [Google Scholar] [CrossRef]
- Aaltonen, M.; Peng, C.; Wilson, B.P.; Lundström, M. Leaching of Metals from Spent Lithium-Ion Batteries. Recycling 2017, 2, 20. [Google Scholar] [CrossRef]
- Roy, J.J.; Cao, B.; Madhavi, S. A Review on the Recycling of Spent Lithium-Ion Batteries (LIBs) by the Bioleaching Approach. Chemosphere 2021, 282, 130944. [Google Scholar] [CrossRef]
- Horeh, N.B.; Mousavi, S.M.; Shojaosadati, S.A. Bioleaching of Valuable Metals from Spent Lithium-Ion Mobile Phone Batteries Using Aspergillus niger. J. Power Sources 2016, 320, 257–266. [Google Scholar] [CrossRef]
- Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustain. Chem. 2021, 2, 167–205. [Google Scholar] [CrossRef]
- Desmarais, M.; Pirade, F.; Zhang, J.; Rene, E.R. Biohydrometallurgical Processes for the Recovery of Precious and Base Metals from Waste Electrical and Electronic Equipments: Current Trends and Perspectives. Bioresour. Technol. Rep. 2020, 11, 100526. [Google Scholar] [CrossRef]
- Hoque, M.E.; Philip, O.J. Biotechnological Recovery of Heavy Metals from Secondary Sources—An Overview. Mater. Sci. Eng. C 2011, 31, 57–66. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Comparative Assessment of Metallurgical Recovery of Metals from Electronic Waste with Special Emphasis on Bioleaching. Environ. Sci. Pollut. Res. 2017, 24, 6989–7008. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; Struhs, E.; Mirkouei, A.; Reed, D. A Novel Continuous Ultrasound-Assisted Leaching Process for Rare Earth Element Extraction: Environmental and Economic Assessment. Sustain. Chem. 2025, 6, 33. [Google Scholar] [CrossRef]
- Naseri, T.; Bahaloo-Horeh, N.; Mousavi, S.M. Environmentally Friendly Recovery of Valuable Metals from Spent Coin Cells through Two-Step Bioleaching Using Acidithiobacillus thiooxidans. J. Environ. Manag. 2019, 235, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Naseri, T.; Bahaloo-Horeh, N.; Mousavi, S.M. Bacterial Leaching as a Green Approach for Typical Metals Recovery from End-of-Life Coin Cells Batteries. J. Clean. Prod. 2019, 220, 483–492. [Google Scholar] [CrossRef]
- Jegan Roy, J.; Srinivasan, M.; Cao, B. Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density. ACS Sustain. Chem. Eng. 2021, 9, 3060–3069. [Google Scholar] [CrossRef]
- Huang, T.; Liu, L.; Zhang, S. Recovery of Cobalt, Lithium, and Manganese from the Cathode Active Materials of Spent Lithium-Ion Batteries in a Bio-Electro-Hydrometallurgical Process. Hydrometallurgy 2019, 188, 101–111. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Zhang, X.; Li, X.; Qiu, Y.; Zhu, M.; Tan, W. Mechanism Underlying the Bioleaching Process of LiCoO2 by Sulfur-Oxidizing and Iron-Oxidizing Bacteria. J. Biosci. Bioeng. 2019, 128, 344–354. [Google Scholar] [CrossRef]
- Lobos, A. Bioleaching Potential of Filamentous Fungi to Mobilize Lithium and Cobalt from Spent Rechargeable Li-Ion Batteries; University of South Florida: Tampa, FL, USA, 2017. [Google Scholar]
- Hartono, M.; Astrayudha, M.A.; Petrus, H.T.B.M.; Budhijanto, W.; Sulistyo, H. Lithium Recovery of Spent Lithium-Ion Battery Using Bioleaching from Local Sources Microorganism. Rasayan J. Chem. 2017, 10, 897–903. [Google Scholar] [CrossRef]
- Alipanah, M.; Jin, H.; Reed, D.W.; Thompson, V.S.; Fujita, Y. Sustainable Bioleaching of Lithium-Ion Batteries for Critical Materials Recovery. J. Clean. Prod. 2023, 382, 135274. [Google Scholar] [CrossRef]
- Lalropuia, L.; Kucera, J.; Rassy, W.Y.; Pakostova, E.; Schild, D.; Mandl, M.; Kremser, K.; Guebitz, G.M. Metal Recovery from Spent Lithium-Ion Batteries via Two-Step Bioleaching Using Adapted Chemolithotrophs from an Acidic Mine Pit Lake. Front. Microbiol. 2024, 15, 1347072. [Google Scholar] [CrossRef] [PubMed]
- Naseri, T.; Mousavi, S.M. Improvement of Li and Mn Bioleaching from Spent Lithium-Ion Batteries, Using Step-Wise Addition of Biogenic Sulfuric Acid by Acidithiobacillus thiooxidans. Heliyon 2024, 10, e37447. [Google Scholar] [CrossRef]
- Xin, Y.; Guo, X.; Chen, S.; Wang, J.; Wu, F.; Xin, B. Bioleaching of Valuable Metals Li, Co, Ni and Mn from Spent Electric Vehicle Li-Ion Batteries for the Purpose of Recovery. J. Clean. Prod. 2016, 116, 249–258. [Google Scholar] [CrossRef]
- Lim, J.; Jang, Y.; Lee, J.; Lee, C.; Jbari, O.; Kwon, K.; Chung, E. Hydrometallurgical Process of Spent Lithium-Ion Battery Recycling Part. 2 Recovery of Valuable Metals from the Cathode Active Material Leachates: Review and Cost Analysis. Hydrometallurgy 2025, 236, 106516. [Google Scholar] [CrossRef]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for Heavy Metal Removal: A Review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Sieber, A.; Spiess, S.; Rassy, W.Y.; Schild, D.; Rieß, T.; Singh, S.; Jain, R.; Schönberger, N.; Lederer, F.; Kremser, K.; et al. Fundamentals of Bio-Based Technologies for Selective Metal Recovery from Bio-Leachates and Liquid Waste Streams. Front. Bioeng. Biotechnol. 2024, 12, 1528992. [Google Scholar] [CrossRef]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol. 2018, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Sedlakova-Kadukova, J.; Marcincakova, R.; Luptakova, A.; Vojtko, M.; Fujda, M.; Pristas, P. Comparison of Three Different Bioleaching Systems for Li Recovery from Lepidolite. Sci. Rep. 2020, 10, 14594. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T. Removal and Recovery of Lithium Using Various Microorganisms. J. Biosci. Bioeng. 2005, 100, 562–566. [Google Scholar] [CrossRef]
- Zolgharnei, H.; Karami, K.; Mazaheri, A.M.; Dadolahi, S.A. Investigation of Heavy Metals Biosorption on Pseudomonas aeruginosa Strain MCCB 102 Isolated from the Persian Gulf. Asian J. Biotechnol. 2010, 2, 99–109. [Google Scholar] [CrossRef][Green Version]
- Arifiyanto, A.; Apriyanti, F.D.; Purwaningsih, P.; Kalqutny, S.H.; Agustina, D.; Surtiningsih, T.; Shovitri, M.; Zulaika, E. Lead (Pb) Bioaccumulation; Genera Bacillus Isolate S1 and SS19 as a Case Study. In Proceedings of the International Biology Conference 2016: Biodiversity and Biotechnology for Human Welfare, Surabaya, Indonesia, 15 October 2016; p. 020003. [Google Scholar]
- Aslam, F.; Yasmin, A.; Sohail, S. Bioaccumulation of Lead, Chromium, and Nickel by Bacteria from Three Different Genera Isolated from Industrial Effluent. Int. Microbiol. 2020, 23, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Shamim, S. Biosorption of Heavy Metals. In Biosorption; InTech: London, UK, 2018. [Google Scholar]
- Mahmoodi, A.; Farinas, E.T. Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering. Microorganisms 2024, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-García, L.I.; Alarcón-Herrera, M.T.; Ayala-García, V.M.; Barraza-Salas, M.; Salas-Pacheco, J.M.; Díaz-Valles, J.F.; Pedraza-Reyes, M. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein to Monitor Arsenic. Microbiol. Spectr. 2023, 11, e0043223. [Google Scholar] [CrossRef]
- Hinc, K.; Ghandili, S.; Karbalaee, G.; Shali, A.; Noghabi, K.A.; Ricca, E.; Ahmadian, G. Efficient Binding of Nickel Ions to Recombinant Bacillus subtilis Spores. Res. Microbiol. 2010, 161, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Guoyan, Z.; Yingfeng, A.; Zabed, H.M.; Qi, G.; Yang, M.; Jiao, Y.; Li, W.; Wenjing, S.; Xianghui, Q. Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications. J. Microbiol. Biotechnol. 2019, 29, 179–190. [Google Scholar] [CrossRef]
- Dong, W.; Li, S.; Camilleri, E.; Korza, G.; Yankova, M.; King, S.M.; Setlow, P. Accumulation and Release of Rare Earth Ions by Spores of Bacillus Species and the Location of These Ions in Spores. Appl. Environ. Microbiol. 2019, 85, e00956-19. [Google Scholar] [CrossRef]
- Wei, Q.; Yan, J.; Chen, Y.; Zhang, L.; Wu, X.; Shang, S.; Ma, S.; Xia, T.; Xue, S.; Zhang, H. Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury. Mol. Biotechnol. 2018, 60, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lozančić, M.; Žunar, B.; Hrestak, D.; Lopandić, K.; Teparić, R.; Mrša, V. Systematic Comparison of Cell Wall-Related Proteins of Different Yeasts. J. Fungi 2021, 7, 128. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Zhu, Y.; Zhang, Y.; Li, X.; Wang, F. Saccharomyces cerevisiae Cell Surface Display Technology: Strategies for Improvement and Applications. Front. Bioeng. Biotechnol. 2022, 10, 1056804. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, H.; Guo, D.; Ma, S. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium. J. Microbiol. Biotechnol. 2016, 26, 846–853. [Google Scholar] [CrossRef]
- Beech, I.B.; Sunner, J.A. Sulphate-Reducing Bacteria and Their Role in Corrosion of Ferrous Materials. In Sulphate-Reducing Bacteria; Cambridge University Press: Cambridge, UK, 2007; pp. 459–482. [Google Scholar] [CrossRef]
- Sethurajan, M.; Gaydardzhiev, S. Bioprocessing of Spent Lithium Ion Batteries for Critical Metals Recovery—A Review. Resour. Conserv. Recycl. 2021, 165, 105225. [Google Scholar] [CrossRef]
- Calvert, G.; Kaksonen, A.; Cheng, K.; Van Yken, J.; Chang, B.; Boxall, N. Recovery of Metals from Waste Lithium Ion Battery Leachates Using Biogenic Hydrogen Sulfide. Minerals 2019, 9, 563. [Google Scholar] [CrossRef]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. Base Metals Recovery from Waste Printed Circuit Board Leachate Using Biogenic Hydrogen Sulfide Gas. Hydrometallurgy 2024, 228, 106341. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, Z.; Di, J.; Wang, D.; Yang, Z.; Guo, X.; Zhu, X. Study on the Effectiveness of Sulfate-Reducing Bacteria to Remove Pb(II) and Zn(II) in Tailings and Acid Mine Drainage. Front. Microbiol. 2024, 15, 1352430. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, Y.; Wei, N. Engineering Biocatalytic and Biosorptive Materials for Environmental Applications. Trends Biotechnol. 2019, 37, 661–676. [Google Scholar] [CrossRef]
- Ruta, L.L.; Lin, Y.-F.; Kissen, R.; Nicolau, I.; Neagoe, A.D.; Ghenea, S.; Bones, A.M.; Farcasanu, I.C. Anchoring Plant Metallothioneins to the Inner Face of the Plasma Membrane of Saccharomyces Cerevisiae Cells Leads to Heavy Metal Accumulation. PLoS ONE 2017, 12, e0178393. [Google Scholar] [CrossRef]
- Deng, X.; He, J.; He, N. Comparative Study on Ni2+-Affinity Transport of Nickel/Cobalt Permeases (NiCoTs) and the Potential of Recombinant Escherichia coli for Ni2+ Bioaccumulation. Bioresour. Technol. 2013, 130, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cong, Y.; Lin, J.; Chang, Y. Enhanced Tolerance and Accumulation of Heavy Metal Ions by Engineered Escherichia coli Expressing Pyrus calleryana Phytochelatin Synthase. J. Basic. Microbiol. 2015, 55, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.-Y.; Guo, Y.; Yang, X.-Q.; Zhang, W.; Huang, X.-Q. Surface Display of Metal Binding Domain Derived from PbrR on Escherichia coli Specifically Increases Lead(II) Adsorption. Biotechnol. Lett. 2018, 40, 837–845. [Google Scholar] [CrossRef]
- Tang, X.; Zeng, G.; Fan, C.; Zhou, M.; Tang, L.; Zhu, J.; Wan, J.; Huang, D.; Chen, M.; Xu, P.; et al. Chromosomal Expression of CadR on Pseudomonas aeruginosa for the Removal of Cd(II) from Aqueous Solutions. Sci. Total Environ. 2018, 636, 1355–1361. [Google Scholar] [CrossRef]
- Selvamani, V.; Jeong, J.; Maruthamuthu, M.K.; Arulsamy, K.; Na, J.-G.; Hong, S.H. Adsorption of Lithium on Cell Surface as Nanoparticles through Lithium Binding Peptide Display in Recombinant Escherichia coli. Biotechnol. Bioprocess. Eng. 2023, 28, 255–262. [Google Scholar] [CrossRef]
- Bhargawa, B.; Hong, S.H.; Yoo, I.K. Adsorptive Lithium Recovery by Magnetic Beads Harboring Lithium-Binding Peptide. Desalination 2024, 577, 117412. [Google Scholar] [CrossRef]





| Material | Microorganism | Bioleaching Method | Results | References |
|---|---|---|---|---|
| LIBs | A. niger | One step, two step, spent-medium | With spent-medium a maximum recovery efficiency of Cu 100%, Li 95%, Mn 70%, Al 65%, Co 45%, and Ni 38% | [19] |
| LIBs | Native bacteria | One step | Optimal Li recovery of 62.83% | [31] |
| LIBs | A. niger MM1 and SG1, A. thiooxidans 80191 | One step, spent-medium | Highest recovery rates for Co 82% and Li 100% using the MM1 strain with spent-medium | [15] |
| LIBs | A. ferrooxidans, A. thiooxidans | Spent-medium | Co 53%, Li 60% | [7] |
| LIBs | A. ferrooxidans, A. thiooxidans | Two step | Co 50.4%, Li 99.2% | [14] |
| LIBs | Sulfur-oxidizing bacteria | Two step | Co 91.45%, Li 93.64 | [28] |
| Waste coin batteries | A. ferrooxidans | Two step | Co 88%, Li 100% | [26] |
| Waste coin batteries | A. thiooxidans | Two step | Co 60%, Li 99% | [25] |
| LiCO2 batteries | Sulfur-oxidizing and iron-oxidizing bacteria | One step | Pyrite addition: Co 94.2%, Li 91.4% | [29] |
| NMC LIBs | A. ferrooxidans | Two step | Co 82%, Li 89% | [27] |
| LIBs | A. ferrooxidans | Two step | 100 g/L pulp density with replenished cycles: Co 94%, Li 60% | [3] |
| LIBs | Gluconobacter oxydans | Spent-medium | Co 71–86%, Li 100%, Mn 100%, Ni 57–84% | [32] |
| NMC LIBs | Consortium of adapted acidophiles | Two step | 10 g/L pulp density: Co 2.92 g/L, Li 0.43 g/L | [33] |
| LIBs | A. thiooxidans | Spent-medium + addition of biogenic acid | Li 93%, Mn 15% | [34] |
| Donor Organism | Host | Peptide/Protein | Target Metal | Reference |
|---|---|---|---|---|
| Peas and Helicobacter pylori | E. coli | MTs and NiCoT transporter protein | Ni | [62] |
| Pyrus calleryana | E. coli | PcPCS1 gene for phytochelatin synthase | Cd, Cu, Hg | [63] |
| Arabidopsis thaliana and Noccaea caerulescens | Saccharomyces cerevisiae | MTs | Cu, Zn, Mn, Ni, Co, Cd | [61] |
| – | E. coli | Lead (Pb) binding domain | Pb | [64] |
| – | Pseudomonas aeruginosa | Cadmium-induced regulatory protein CadR | Cd | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Martinez-Rodriguez, G.A.; Rojas-Contreras, J.A.; Vázquez-Ortega, P.G.; Reyes-Jáquez, D.; Medrano-Roldán, H.; Urtiz-Estrada, N.; Barraza-Salas, M.; Fierros-Romero, G.; Rodríguez-Andrade, E.; Zazueta-Álvarez, D.E. Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides. Recycling 2026, 11, 4. https://doi.org/10.3390/recycling11010004
Martinez-Rodriguez GA, Rojas-Contreras JA, Vázquez-Ortega PG, Reyes-Jáquez D, Medrano-Roldán H, Urtiz-Estrada N, Barraza-Salas M, Fierros-Romero G, Rodríguez-Andrade E, Zazueta-Álvarez DE. Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides. Recycling. 2026; 11(1):4. https://doi.org/10.3390/recycling11010004
Chicago/Turabian StyleMartinez-Rodriguez, Gloria Abigail, Juan Antonio Rojas-Contreras, Perla Guadalupe Vázquez-Ortega, Damián Reyes-Jáquez, Hiram Medrano-Roldán, Norma Urtiz-Estrada, Marcelo Barraza-Salas, Grisel Fierros-Romero, Ernesto Rodríguez-Andrade, and David Enrique Zazueta-Álvarez. 2026. "Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides" Recycling 11, no. 1: 4. https://doi.org/10.3390/recycling11010004
APA StyleMartinez-Rodriguez, G. A., Rojas-Contreras, J. A., Vázquez-Ortega, P. G., Reyes-Jáquez, D., Medrano-Roldán, H., Urtiz-Estrada, N., Barraza-Salas, M., Fierros-Romero, G., Rodríguez-Andrade, E., & Zazueta-Álvarez, D. E. (2026). Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides. Recycling, 11(1), 4. https://doi.org/10.3390/recycling11010004

