Abiotic and Biotic Stress of the Crops and Horticultural Plants, 2nd Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 2924

Special Issue Editor


E-Mail Website
Guest Editor
School of Life Science, Hubei University, Wuhan 430062, China
Interests: seed germination; proteomics; metabolomics; transcriptomics; genomics; crop seed development; seed dormancy; GA
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Crop plants and horticultural crops are constantly exposed to a range of abiotic and biotic stresses, such as drought, salinity, extreme temperatures, diseases, pests, and invasive species, and these stresses can significantly impact crop yield and quality, resulting in substantial economic losses and food security challenges. It is imperative, therefore, that we explore effective strategies to mitigate the adverse impacts of these stresses on crops and horticultural plant production.

For this Special Issue, we invite original research articles, reviews, and case studies focusing on innovative approaches, new insights, and practical solutions related to abiotic and biotic stress management as well as those investigating underlying responsive mechanisms in crops and horticultural plants. Submissions may cover a wide range of topics including, but not limited to, stress tolerance mechanisms, genetic and molecular approaches, breeding strategies, physiological and biochemical responses, integrated pest and disease management, precision farming technologies, and sustainable practices.

We encourage contributors from diverse disciplines, including agronomy, plant breeding, pathology, entomology, genetics, molecular biology, and environmental science, to join us in addressing the challenges and opportunities associated with abiotic and biotic stress in crops and horticultural plants.

We look forward to your valuable contributions to this important and timely Special Issue.

Prof. Dr. Pingfang Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • biotic stress
  • crops
  • horticultural plants
  • genetic analysis
  • genomics
  • plant defense mechanisms stress response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1333 KB  
Article
Study on Rice Submergence Germination Through the Combination of RNA-Seq and Genome Resequencing Strategies
by Xin Wang, Feng Yu, Linfeng Feng, Mingdong Zhu and Pingfang Yang
Plants 2025, 14(19), 3033; https://doi.org/10.3390/plants14193033 - 30 Sep 2025
Viewed by 269
Abstract
Submergence during germination is a major barrier to the adoption of direct-seeded rice (DSR). Despite its importance in overcoming this barrier, the genetic architecture underlying the rapid coleoptile elongation under submergence remains largely elusive. Through screening among 20 different rice cultivars, a submergence-tolerant [...] Read more.
Submergence during germination is a major barrier to the adoption of direct-seeded rice (DSR). Despite its importance in overcoming this barrier, the genetic architecture underlying the rapid coleoptile elongation under submergence remains largely elusive. Through screening among 20 different rice cultivars, a submergence-tolerant cultivar Xian133 and a sensitive cultivar Chang15 were obtained. Comparative transcriptomics and whole-genome resequencing were conducted between these two cultivars. The results show that rapid germination under flooding is driven primarily by transcriptional reprogramming rather than by antagonistic gene regulation. Transcriptome-wide analyses revealed a significant enrichment of the amino sugar and nucleotide sugar metabolism pathway in tolerant cultivar. This was further supported by the fact that promoter variants at the key loci OscPGM and OsAGPL1 modulate the expression of these genes and emerge as principal determinants of coleoptile elongation capacity under hypoxia. The identified single-nucleotide polymorphisms (SNPs) within these regulatory regions provide promising molecular targets for marker-assisted breeding of DSR cultivars. Full article
Show Figures

Figure 1

17 pages, 6077 KB  
Article
Identification of Chalcone Synthase Genes and Their Responses to Salt and Cold Stress in Poncirus trifoliata
by Lijuan Jiang, Yu Sheng, Chengyang Song, Teng Liu, Shuangyu Sheng and Xiaoyong Xu
Plants 2025, 14(19), 3003; https://doi.org/10.3390/plants14193003 - 28 Sep 2025
Viewed by 300
Abstract
Chalcone Synthase (CHS) plays a vital role in flavonoid synthesis, influencing plant growth, development, and responses to both biotic and abiotic stress. In this study, 11 CHS genes were identified in Poncirus trifoliata using bioinformatics methods, with their distribution across five chromosomes and [...] Read more.
Chalcone Synthase (CHS) plays a vital role in flavonoid synthesis, influencing plant growth, development, and responses to both biotic and abiotic stress. In this study, 11 CHS genes were identified in Poncirus trifoliata using bioinformatics methods, with their distribution across five chromosomes and unassigned contigs. Each gene contains 2–3 exons and 3–8 conserved motifs. In silico prediction suggested that the PtrCHS proteins are localized in the cytoplasm. PtrCHS9 and PtrCHS11 share identical protein tertiary structures. Phylogenetic analysis classified the CHS family members into four subgroups. Synteny analysis revealed one set of collinear gene pairs within Poncirus trifoliata. Between Poncirus trifoliata and Arabidopsis thaliana, two sets of collinear gene pairs were identified, while one such set was found between Poncirus trifoliata and Oryza sativa. Promoter element analysis showed the presence of various hormone response and stress response elements within PtrCHS promoters. RNA-Seq data demonstrated tissue-specific expression patterns of PtrCHSs. RT-qPCR results indicated that all CHS genes, except PtrCHS11, respond to salt stress with dynamic, member-specific patterns. Additionally, four PtrCHSs (PtrCHS3, PtrCHS5, PtrCHS7, and PtrCHS10) were significantly upregulated in response to cold treatment. Notably, PtrCHS7 and PtrCHS10 maintained high expression levels at both 6 and 12 h, implying they may be key players in cold stress response in Poncirus trifoliata. Clones of PtrCHS7 and PtrCHS10 were obtained, and overexpression vectors were constructed in preparation for gene transformation. Overall, this study provides a solid foundation for future research into the functions of the PtrCHSs. Full article
Show Figures

Figure 1

15 pages, 24657 KB  
Article
Identification and Genetic Analysis of Downy Mildew Resistance in Intraspecific Hybrids of Vitis vinifera L.
by Xing Han, Yihan Li, Zhilei Wang, Zebin Li, Nanyang Li, Hua Li and Xinyao Duan
Plants 2025, 14(15), 2415; https://doi.org/10.3390/plants14152415 - 4 Aug 2025
Viewed by 524
Abstract
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance [...] Read more.
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance and high quality. To assess the potential of intraspecific recurrent selection in V. vinifera (IRSV) in improving grapevine resistance to downy mildew and to analyze the pattern of disease resistance inheritance, the disease-resistant variety Ecolly was selected as one of the parents and crossed with Cabernet Sauvignon, Marselan, and Dunkelfelder, respectively, creating three reciprocal combinations, resulting in 1657 hybrid F1 progenies. The primary results are as follows: (1) significant differences in disease resistance among grape varieties and, significant differences in disease resistance between different vintages of the same variety were found; (2) the leaf downy mildew resistance levels of F1 progeny of different hybrid combinations conformed to a skewed normal distribution and showed some maternal dominance; (3) the degree of leaf bulbous elevation was negatively correlated with the level of leaf downy mildew resistance, and the correlation coefficient with the level of field resistance was higher; (4) five progenies with higher levels of both field and in vitro disease resistance were obtained. Intraspecific hybridization can improve the disease resistance of offspring through super-parent genetic effects, and Ecolly can be used as breeding material for recurrent hybridization to obtain highly resistant varieties. Full article
Show Figures

Figure 1

16 pages, 3080 KB  
Article
Selenium Alleviates Cadmium Toxicity in Pepper (Capsicum annuum L.) by Reducing Accumulation, Enhancing Stress Resistance, and Promoting Growth
by Chen Cheng, Jianxiu Liu, Jiahui Liu, Zhiqiang Gao, Yang Yang, Bo Zhu, Fengxian Yao and Qing Ye
Plants 2025, 14(9), 1291; https://doi.org/10.3390/plants14091291 - 24 Apr 2025
Cited by 1 | Viewed by 827
Abstract
The enrichment of cadmium (Cd) is an important factor threatening crop growth and food safety. However, it is unclear whether exogenous selenium (Se) can simultaneously achieve Cd reduction and promote the growth of peppers. This study used Yuefeng 750 and Hongtianhu 101 as [...] Read more.
The enrichment of cadmium (Cd) is an important factor threatening crop growth and food safety. However, it is unclear whether exogenous selenium (Se) can simultaneously achieve Cd reduction and promote the growth of peppers. This study used Yuefeng 750 and Hongtianhu 101 as materials and investigated the interaction effects of different Se-Cd concentrations (Cd = 2 and 5 μM; Se = 0, 0.5, and 2 μM) on the uptake and transport of Cd and Se, resistance physiology, and growth and development of pepper seedlings in a hydroponic experiment. The organ Cd content was significantly increased in pepper seedlings, inhibiting their growth and aggravating their physiological stress under Cd application. However, the growth and photosynthetic capacity of peppers were promoted after Se application under Cd stress. The superoxide anion (O2), hydrogen peroxide (H2O2), malondialdehyde (MDA), and abscisic acid (ABA) contents and indole-3-acetic acid oxidase (IAAO) activity in the leaves showed a significantly progressive decline, while the proline (Pro), ascorbic acid (ASA), and trans zeatin riboside (ZR) contents showed a significant rising trend. Thus, the growth, development, and dry matter accumulation of peppers were enhanced by reducing Cd stress. Meanwhile, the application of exogenous Se significantly improved the accumulation of Se in seedlings. In addition, compared to Hongtianhu 101, the Yuefeng 750 cultivars had a greater Cd and Se enrichment capacity. The cultivation of Cd-excluding cultivars combined with exogenous Se addition can be used as a recommended solution to reduce Cd toxicity and achieve Cd reduction and Se enrichment in peppers under Cd pollution. Full article
Show Figures

Figure 1

18 pages, 4533 KB  
Article
High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response
by Zizhuo Wang, Kunrong Qin, Wentao Chen, Guanpeng Ma, Yu Zhan, Haoxiang Zhu and Haiyang Wang
Plants 2025, 14(8), 1233; https://doi.org/10.3390/plants14081233 - 17 Apr 2025
Viewed by 753
Abstract
R. platypodum (Rhododendron platypodum) is an endangered alpine species with a highly restricted distribution in the southwestern region of China, which possesses significant ornamental and horticultural value. In this study, the high-quality genome assembly of R. platypodum at the chromosomal level [...] Read more.
R. platypodum (Rhododendron platypodum) is an endangered alpine species with a highly restricted distribution in the southwestern region of China, which possesses significant ornamental and horticultural value. In this study, the high-quality genome assembly of R. platypodum at the chromosomal level is reported. The total genome size was determined to be 642.25 Mb, with a contig N50 of 25.64 Mb, and it contains 36,522 predicted genes. Comparative genomic analysis between R. platypodum and other species revealed the expansion of gene families, such as those related to transition metal ion binding and sodium ion transport, as well as the contraction of gene families involved in the recognition of pollen and pollen–pistil interaction. These findings might explain the adaptation of R. platypodum to rocky habitats and contribute to its endangered status. Furthermore, a heat stress experiment was conducted on R. platypodum, followed by transcriptome sequencing and physiological co-analysis to construct a co-expression network. This analysis identified the candidate gene TAR1-A and other transcription factors exhibiting differential expression under heat stress. The whole-genome sequencing, transcriptome analysis, and physiological co-analysis of R. platypodum provide valuable resources for its conservation and offer insights into its mechanisms of heat stress. Full article
Show Figures

Figure 1

Back to TopTop