Abiotic and Biotic Stress of the Crops and Horticultural Plants, 2nd Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 642

Special Issue Editor


E-Mail Website
Guest Editor
School of Life Science, Hubei University, Wuhan 430062, China
Interests: seed germination; proteomics; metabolomics; transcriptomics; genomics; crop seed development; seed dormancy; GA
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Crop plants and horticultural crops are constantly exposed to a range of abiotic and biotic stresses, such as drought, salinity, extreme temperatures, diseases, pests, and invasive species, and these stresses can significantly impact crop yield and quality, resulting in substantial economic losses and food security challenges. It is imperative, therefore, that we explore effective strategies to mitigate the adverse impacts of these stresses on crops and horticultural plant production.

For this Special Issue, we invite original research articles, reviews, and case studies focusing on innovative approaches, new insights, and practical solutions related to abiotic and biotic stress management as well as those investigating underlying responsive mechanisms in crops and horticultural plants. Submissions may cover a wide range of topics including, but not limited to, stress tolerance mechanisms, genetic and molecular approaches, breeding strategies, physiological and biochemical responses, integrated pest and disease management, precision farming technologies, and sustainable practices.

We encourage contributors from diverse disciplines, including agronomy, plant breeding, pathology, entomology, genetics, molecular biology, and environmental science, to join us in addressing the challenges and opportunities associated with abiotic and biotic stress in crops and horticultural plants.

We look forward to your valuable contributions to this important and timely Special Issue.

Prof. Dr. Pingfang Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • biotic stress
  • crops
  • horticultural plants
  • genetic analysis
  • genomics
  • plant defense mechanisms stress response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3080 KiB  
Article
Selenium Alleviates Cadmium Toxicity in Pepper (Capsicum annuum L.) by Reducing Accumulation, Enhancing Stress Resistance, and Promoting Growth
by Chen Cheng, Jianxiu Liu, Jiahui Liu, Zhiqiang Gao, Yang Yang, Bo Zhu, Fengxian Yao and Qing Ye
Plants 2025, 14(9), 1291; https://doi.org/10.3390/plants14091291 - 24 Apr 2025
Viewed by 298
Abstract
The enrichment of cadmium (Cd) is an important factor threatening crop growth and food safety. However, it is unclear whether exogenous selenium (Se) can simultaneously achieve Cd reduction and promote the growth of peppers. This study used Yuefeng 750 and Hongtianhu 101 as [...] Read more.
The enrichment of cadmium (Cd) is an important factor threatening crop growth and food safety. However, it is unclear whether exogenous selenium (Se) can simultaneously achieve Cd reduction and promote the growth of peppers. This study used Yuefeng 750 and Hongtianhu 101 as materials and investigated the interaction effects of different Se-Cd concentrations (Cd = 2 and 5 μM; Se = 0, 0.5, and 2 μM) on the uptake and transport of Cd and Se, resistance physiology, and growth and development of pepper seedlings in a hydroponic experiment. The organ Cd content was significantly increased in pepper seedlings, inhibiting their growth and aggravating their physiological stress under Cd application. However, the growth and photosynthetic capacity of peppers were promoted after Se application under Cd stress. The superoxide anion (O2), hydrogen peroxide (H2O2), malondialdehyde (MDA), and abscisic acid (ABA) contents and indole-3-acetic acid oxidase (IAAO) activity in the leaves showed a significantly progressive decline, while the proline (Pro), ascorbic acid (ASA), and trans zeatin riboside (ZR) contents showed a significant rising trend. Thus, the growth, development, and dry matter accumulation of peppers were enhanced by reducing Cd stress. Meanwhile, the application of exogenous Se significantly improved the accumulation of Se in seedlings. In addition, compared to Hongtianhu 101, the Yuefeng 750 cultivars had a greater Cd and Se enrichment capacity. The cultivation of Cd-excluding cultivars combined with exogenous Se addition can be used as a recommended solution to reduce Cd toxicity and achieve Cd reduction and Se enrichment in peppers under Cd pollution. Full article
Show Figures

Figure 1

18 pages, 4533 KiB  
Article
High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response
by Zizhuo Wang, Kunrong Qin, Wentao Chen, Guanpeng Ma, Yu Zhan, Haoxiang Zhu and Haiyang Wang
Plants 2025, 14(8), 1233; https://doi.org/10.3390/plants14081233 - 17 Apr 2025
Viewed by 263
Abstract
R. platypodum (Rhododendron platypodum) is an endangered alpine species with a highly restricted distribution in the southwestern region of China, which possesses significant ornamental and horticultural value. In this study, the high-quality genome assembly of R. platypodum at the chromosomal level [...] Read more.
R. platypodum (Rhododendron platypodum) is an endangered alpine species with a highly restricted distribution in the southwestern region of China, which possesses significant ornamental and horticultural value. In this study, the high-quality genome assembly of R. platypodum at the chromosomal level is reported. The total genome size was determined to be 642.25 Mb, with a contig N50 of 25.64 Mb, and it contains 36,522 predicted genes. Comparative genomic analysis between R. platypodum and other species revealed the expansion of gene families, such as those related to transition metal ion binding and sodium ion transport, as well as the contraction of gene families involved in the recognition of pollen and pollen–pistil interaction. These findings might explain the adaptation of R. platypodum to rocky habitats and contribute to its endangered status. Furthermore, a heat stress experiment was conducted on R. platypodum, followed by transcriptome sequencing and physiological co-analysis to construct a co-expression network. This analysis identified the candidate gene TAR1-A and other transcription factors exhibiting differential expression under heat stress. The whole-genome sequencing, transcriptome analysis, and physiological co-analysis of R. platypodum provide valuable resources for its conservation and offer insights into its mechanisms of heat stress. Full article
Show Figures

Figure 1

Back to TopTop