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Abstract: Cadmium (Cd) toxicity is a serious environmental issue causing a significant reduction in
crop growth and productivity globally. Trehalose (Tre) has emerged as an important reducing sugar that
can reduce the adverse impacts of different abiotic stresses. Therefore, the present investigation was
performed to determine the key role of Tre in alleviating Cd stress in the mung bean (Vigna radiata L.)
crop. The study was comprised of different treatments of cadmium (0, 10, 20 mg kg−1 soil) and Tre
(0, 15 and 30 mM). Cd stress significantly restricted the growth and yield of mung bean. However,
Tre supplementation markedly improved growth and yield due to pronounced reductions in Cd
uptake and Cd-induced oxidative stress as shown by the lower production of hydrogen peroxide
(H2O2), electrolyte leakage (EL) and malondialdehyde (MDA) in Cd-stressed plants as well as by the
enhanced activities of antioxidant enzymes (CAT, POD, APX and AsA). Moreover, the ameliorative
role of Tre to Cd toxicity was also demonstrated by its ability to enhance chlorophyll contents, total
soluble protein (TSP) and free amino acids (FAA). Taken together, Tre supplementation played a key
beneficial role in improving Cd stress tolerance and yield traits of mung bean through restricting Cd
uptake and enhancing photosynthetic capacity, osmolytes biosynthesis and antioxidant activities.

Keywords: cadmium; mung bean; photosynthetic pigments; antioxidants; ROS; trehalose

1. Introduction

Environmental pollution and ecological damages have been substantially increased in
recent time owing to rapid industrialization. Heavy metal pollution in the soil has become
a serious environmental issue nowadays and it negatively affects food production and
human health [1]. Cadmium (Cd) is a non-essential and toxic element [2] readily absorbed
by plant roots, causing serious structural and functional alternations as well as inhibition
of the seed germination and root growth [3]. Cadmium inhibits the various physiological
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processes including photosynthesis, respiration, water movement, leaf gas exchange and,
therefore, impairs plant metabolism [4–7]. Additionally, Cd stress reduces the chlorophyll
synthesis [8] and induces antioxidant activities by increasing the production of reactive
oxygen species (ROS). Cd stress also decreases plant biomass production by inducing
oxidative damage and decreasing the nutrient uptake and photosynthetic processes [9–11].
Moreover, Cd stress negatively affects the mineral uptake, transpiration rate and stomatal
conductance [12]. Cd-induced injury is related to oxidative stress which causes damages
to protein, DNA and lipids [13–18], and eventually leads to plant death [10]. However,
plants respond to that and reduce the damages of heavy metals stress through activating
their diverse enzymatic and non-enzymatic anti-oxidants and the accumulation of various
osmolytes [10]. Cd easily accumulates in plant organs and in turn enters into the human
food chain and causes chronic diseases [19]. Therefore, it is urgently need to find appropri-
ate strategies to remediate the Cd contaminated soils to prevent its effects on plants and
human health.

Globally, different techniques including leaching, stabilization and phytoremediation
are used to remediate the Cd contaminated soils to prevent its impacts on the environ-
ment and humans [20,21]. Nonetheless, the current remediation practices to treat heavy
metal-polluted soils have shown promising results; however, they are expensive [22].
Likewise, the use of different chelating agents to treat the heavy metal-polluted soils
is also expensive and they also cause pollution owing to their artificial footprints and
non-biodegradability [23]. Thus, to address these concerns the application of different
osmo-protectants is suggested as an imperative strategy to ensure safe production and im-
prove the plant tolerance against different abiotic stresses. Different protectants including
proline, glycine betaine (GB) and trehalose achieved global attention due to their excellent
efficiency in protecting plants from the deleterious effects of different stresses [24–27]. The
selection of a suitable osmo-protectant is crucial to increase the plant’s ability to cope with
stresses. In this context, it is reported that exogenously applied osmo-protectants protect
plants from the adverse effects of heavy metal stress [8].

Trehalose (Tre) is a non-reducing sugar and it is considered as an important osmo-
protectant against different stresses [28,29]. Tre formation in plants involves the pro-
duction of trehalose-6-phosphate (T6P) from glucose-6-phosphate and UDP-glucose by
trehalose-6-phosphate synthase (TPS), and the subsequent dephosphorylation of T6P to Tre
by trehalose-6-phosphate phosphatase (TPP) [30]. Two molecules of uridine diphosphate
glucose (UDP-Glc) and glucose-6-phosphate (Glc-6-P) are used for the biosynthesis of
Tre in plants. The enzyme TSP catalyzed UDP-Glc and Glc-6-P into T6P [31,32] whereas
enzyme trehalose-6-phosphate phosphatase (TPP) catalyzed the T6P into Tre as a final
product [33,34]. Tre is an important energy source and possesses special physio-chemical
characteristics (glycosidic bond and higher hydrophilicity); therefore, it stabilizes dehy-
drated proteins, lipids and membranes and protects the biological structure from oxidative
damages [23]. Trehalose acts as an imperious elicitor of the genes involved in stress re-
sponses and ROS detoxification [35]. Nonetheless, endogenous Tre production in most
plants is not adequate to mitigate the effects of different stresses, therefore, in this case
exogenously applied Tre increased the endogenous Tre levels and was recommended as an
important alternate strategy to induce stress tolerance [36]. The exogenous Tre application
alters the enzymatic activities and, therefore, reduces the ROS level [37]. Exogenously
applied Tre increased the biomass production under salty conditions by reducing H2O2
and MDA accumulation [35]. Moreover, Tre application increased the activities of the
anti-oxidants enzymes (CAT, SOD, POD) and the internal trehalose content in rice plants
grown in hydroponic culture under Cd stress [23]. Moreover, formation of Cd–Tre chelation
effectively reduces the Cd mobility and toxicity to rice plant organs and therefore improves
rice growth under Cd stress [23].

Mung bean (Vigna radiata L.) is an important annual crop cultivated globally as grain,
vegetable and livestock feed and it is also used for medicinal purposes [38,39]. Mung bean
is considered to be sensitive to Cd stress; therefore, Cd stress can cause significant yield
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losses in mung bean. Limited information is available about the mechanistic role of Tre
in mitigating the deleterious impacts of Cd stress. Thus, this research was carried out to
investigate and assess the impacts of exogenously applied Tre on the growth, physiological
attributes and antioxidant systems of mung bean plants grown under Cd stress conditions.
The present study provides interesting insights into the mechanistic role of Tre in improving
Cd stress tolerance and yield of mung bean.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

The present study was conducted to determine the effect of trehalose (Tre) on mung
bean (Vigna radiata L.) plants grown under cadmium stress. This experimental trial was
carried out in pots containing soil collected from the upper soil layer (1–2 cm) from pre-
viously grown rice crop. The soil was sandy loam having pH of 7.82, organic matter of
0.82%, nitrogen of 0.042%, available phosphorus of 6.65 ppm and potassium of 160 ppm.
The fertilizers di-ammonium phosphate (5.50 g) and sulfate of potash (1.82 g) were applied
to each pot to fulfill nutrient needs. Silt and soil were mixed thoroughly (1:2) and pots
contained 6 kg soil and silt. The study was comprised of different Cd stress levels, i.e.,
control (no Cd), 10 and 20 mg kg−1 soil and Tre application levels, i.e., control, 15 and
30 mM. Cadmium chloride was used as the cadmium source, and it was thoroughly mixed
into the soil. Seeds of Azri-Mung-2006 were obtained from the Ayub Agricultural Research
Institute (AARI) Faisalabad and used in the present study. Healthy seeds were sterilized
by soaking in 5% sodium hypochlorite solution for 5 minutes and then carefully washed
2–3 times with water. Afterwards, 10 seeds were sown in every pot at 1 cm depth. After
15 days of germination, weeding and thinning were completed to maintain uniform and
healthy seedlings (6 plants) in each pot. Moreover, pots were visited regularly and irriga-
tion water was applied to pots according to the crop requirement on the basis of visual
experience. Before flowering, the mung bean plants were subjected to the foliar application
of Tre (0, 15 and 30 mM). The foliar application of Tre was completed only once using a
hand sprayer. The plants were collected at the podding stage and used for the subsequent
experimental analyses.

A hydroponic experiment has also been carried out to estimate the morphological
and growth traits of mung bean plants grown under natural and Cd stress conditions in
order to validate and compare the recorded morphological data with those recorded for
plants grown in the above-mentioned soil. The sterilized mung bean seeds were allowed to
grow on wet filter papers at 23 ◦C for 7 days. The germinated mung bean seedlings were
then transferred into hydroponic plastic pots, containing Hoagland plant nutrient solution
and left to grow in a growth chamber having constant conditions (27/20 ◦C (day/night)
and 70% humidity). At the third leaf stage, uniform seedlings were selected and treated in
solutions containing diverse levels of Cd and Tre for four days. The concentrations of Cd
and Tre used to treat mung bean plants were as follows: Cd (0, 200, and 400 µM) and Tre
(0, 15 and 30 mM). Following treatment for four days, the seedlings were harvested and
used for measuring their morphological traits.

2.2. Growth Traits

Three plants per soil and hydroponic pots were used for growth traits’ measurement.
Roots and shoots were separated and their lengths were measured. Roots and shoots were
also weighed to determine their fresh weights. Roots and shoots were then oven-dried
(72 ◦C) for three hours to determine their dry weights. Moreover, the number of leaves per
plant were counted and averaged.

2.3. Measurement of Photosynthetic Pigments Contents in Soil-Grown Plants

The standard procedure of Arnon [40] was used to determine the contents of photo-
synthetic pigments in soil-grown plants. Approximately 0.5 g of plant samples were taken
and ground in 5 mL of methanol solution for 24 h. The mixture was then centrifuged for
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10 min at 10,000 rpm. The absorbance of the extract was then recorded at 663, 645 and
480 nm to determine chlorophyll (a, b) and carotenoid contents. The following standard
formula were used to compute the levels of chlorophylls (a, b) and carotenoids:

chlorophyll a = (12.7 (OD663)− 2.69 (OD645))× V/1000 × W

chlorophyll b = (22.9 (OD645)− 4.68 (OD663))× V/1000 × W

Carotenoid = [(OD480) + 0.114 (OD663) − 0.638 (OD645)]/2500

where V is the volume of sample supernatant and W is the weight of the sample.
For the determination of anthocyanin content, 0.5 g of fresh leaves’ sample was

homogenized in potassium buffer (10 mL). The mixture was then centrifuged for 15 min
at 15,000 rpm. The absorbance of the supernatant was recorded at 600 nm to determine
anthocyanin content.

2.4. Determination of Relative Water Content (RWC) in Soil-Grown Plants

For the measurement of RWC in soil-grown plants, the standard protocol of Mostofa
and Fujita [41] was used. The second leaf was plucked from different mung bean seedlings
and weighed to determine the fresh weight (FW). The leaves were dipped in distilled
water and kept in the dark for 24 h. Leaves were left in the air to dry and then weighed
to determine their turgid weight. Samples were then oven-dried (70 ◦C) for two hours to
determine dry weight. RWC was then estimated using the following standard formula:

RWC(%) =
(FW − DW)

(TW − DW)
× 100

where FW is the fresh weight, DW is the dry weight, and TW is the turgid weight.

2.5. Determination of Electrolyte Leakage (EL), Malondialdehyde (MDA) and Hydrogen Peroxide
(H2O2) Contents in Soil-Grown Plants

To estimate the electrolyte leakage (EL) in soil-grown plants, fresh leaves were collected
from each treatment and washed carefully with distilled water. Approximately 0.5 g of leaf
sample was cut into pieces and placed in a test tube having distilled water (50 mL) and
then first electrical conductivity (EC1) was read on EC meter after 3 h. Afterwards, test
tubes were incubated at 120 ◦C for 20 min and the second value of EC2 was recorded. EL
was estimated using the following standard formula:

EL (%) = (EC1 ÷ EC2) × 100

For determination of the MDA content in soil-grown plants, 0.5 g mung bean leaves
were homogenized in 5 mL of 5% TCA. The mixture was then centrifuged for 15 min at
15,000 rpm and the supernatant was collected. A total of 1 mL TCA (0.5%) and 1 mL of
TBA (thiobutyric acid: 20%) were then added into the supernatant and placed at 90 ◦C for
50 min. Absorbance was noted at 532 nm and 600 nm to determine MDA content following
Cakmak and Horst [42]. For measuring the H2O2 content in soil-grown plants, 0.25 g of
plant leaves were ground in 5 mL of (0.1%) w/v trichloroacetic acid (TCA) using a pestle
and mortar under chilled conditions. The extract was then centrifuged at 15,000 rpm at
4 ◦C for 10 min and the supernatant was collected. Approximately, 1 mL of supernatant,
100 µL potassium phosphate buffer (pH 7.0) and 1 mL of 1 M potassium iodide were mixed
well and the absorbance was recorded at 390 nm following Velikova et al. [43].

2.6. Determination of the Total Soluble Proteins (TSP) and Free Amino Acids (FAA) in
Soil-Grown Plants

Plant leaf samples (0.5 g) were homogenized in 5 mL potassium phosphate (50 mM).
The mixture was then centrifuged at 12,000 rpm for 15 min. A mixture of 100 µL of
fresh plant extract and 100 µL of Bradford reagent were then prepared. Protein intensity
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in leaf tissue was spectrophotometrically measured at 595 nm following Bradford [44].
Moreover, the protocol of the Van Slyke technique [45] was followed to estimate the FAA
content of mung bean plants. Fresh leaves (0.5 g) of mung bean were ground in 5 mL
potassium phosphate buffer (50 mM) in an ice bath. The homogenate was then centrifuged
at 15,000 rpm for 15 min at 4 ◦C. Plant extract was then treated with 1 mL of ninhydrine
(2%) and pyridine (10%) solutions in a test tube. The samples were then heated up at 90
◦C for 30 min. After heating, the volume of the mixture was brought up to 20 mL and
absorbance was noted at 570 nm.

2.7. Antioxidant Activities Assay in Soil-Grown Plants

To analyze the catalase (CAT) activity of mung bean plants, the procedure of Chance
and Maehly [46] was followed. Plant material (0.5 g) was ground in 5 mL of potassium
buffer (50 mM). The mixture was then centrifuged at 4 ◦C and 10,000 rpm for 15 min.
Approximately, 2.5 mL of potassium phosphate buffer was added into a test tube containing
100 µL of H2O2. After that, 100 µL of plant crude extract was rapidly added into the reaction
mixture and absorbance was noted at 240 nm. Peroxidase (POD) activity was estimated
following the method described by Guan et al. [47]. Approximately, 0.5 g of leaf sample
was ground in 5 mL potassium buffer (50 mM) under ice cold conditions and centrifuged
for 15 min at 15,000 rpm and the supernatant was then collected. POD reaction contained
100 µL of H2O2, 100 µL guaiacol and 100 µL of enzyme extract, and the absorbance was
then read at 470 nm. Ascorbate peroxidase (APX) activity was also assessed following the
method of Nakano and Asada [48]. Approximately, 0.5 g of plant samples were ground
into 5 mL of potassium buffer (50 mL) and centrifuged for 15 min at 15,000 rpm to collect
the supernatant. The reaction medium contained 600 µL H2O2, 100 µL ascorbic acid, 1 mL
potassium buffer and 100 µL of enzyme extract. Absorbance was then noted at 290 nm.
The method of Mukherjee and Choudhri [49] was used to assess the ascorbic acid activity.
An amount of 0.5 g of plant leaves were ground in 5 mL of 10 % trichloroacetic acid. The
mixture was then centrifuged at 15,000 rpm for 15 min at 4 ◦C and was then kept for 30 min
at 30 ◦C and absorbance was noted at 520 mM to determine ascorbic acid content.

2.8. Determination of Yield Components in Soil-Grown Plants

Plants’ pods were collected and counted and their lengths were measured. Plants
were then harvested to determine grains’ yield and 100 grain weight.

2.9. Determination of Cadmium Concentration in Organs of Soil-Grown Plants

The plant samples (roots, stems, leaves and grains) were collected, dried and stored.
Afterward, 0.5 g of each plant was ground into powder and digested by adding HNO3:
HClO4 in 2:1 ratio [50]. After digestion, the concentration of Cd in plant organs was
measured using atomic absorption spectrometry and calculated following the formula: Cd
concentration = (reading of AAS × dilution factor)/dry weight of root/shoot/seed and
expressed in µg g−1 of D.M.

2.10. Statistical Analysis

The collected data were subjected to ANOVA using Statistix 8.1 software and the
significant difference among means was computed by LSD test (p < 0.05) [51]. Moreover,
sigma-plot 10 was used to prepare graphs.

3. Results
3.1. Growth Traits

The findings indicated that the different levels of Tre application and Cd stress had
significant impacts on the growth traits of mung bean plants grown in soil and hydroponic
systems (Tables 1 and 2). Cd stress significantly decreased the growth and biomass produc-
tion; however, it was dose-dependent and a higher Cd concentration caused more reduction
as compared to a lower dose of Cd stress. Nonetheless, Tre application induced a markedly
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increase in both growth and biomass production under control and Cd stress conditions
(Tables 1 and 2). The highest RL (6.67 cm) and SL (28.10) were noted under no Cd and
30 mM Tre, and the lowest RL (3.17 cm) and SL (19.20 cm) was noted under highest Cd
level and without Tre supplementation (Table 1). Cd stress significantly reduced the RFW,
SFW, RDW and SDW of mung bean plants (Tables 1 and 2). Nonetheless, Tre application
(30 mM) significantly increased the RFW, SFW, RDW and SDW under Cd stress and control
conditions (Tables 1 and 2). Likewise, a decrease in the number of LPP was recorded under
both Cd stress levels, whereas Tre application induced a significant increase in LPP under
control and both Cd stress levels (Table 1). The application of 30 mM Tre significantly
increased the number of LPP as compared to control and 15 mM Tre application under
control and Cd stress (10 and 20 mg kg−1) (Table 1).

Table 1. Effect of Tre supply on the growth and biomass traits of mung bean grown in soil contami-
nated with Cd.

Treatments Root Length
(cm)

Shoot Length
(cm)

Root Fresh
Weight (g)

Shoot Fresh
Weight (g)

Root Dry
Weight (g)

Shoot Dry
Weight (g)

Leaves Per
Plant

Cd0 Tre0 4.89 ± 0.029 cd 25.40 ± 0.036 c 0.76 ± 0.004 c 5.23 ± 0.111 de 0.27 ± 0.003 c 0.71 ± 0.007 c 11.0 ± 0.559 ab

Cd0 Tre1 5.90 ± 0.158 b 27.13 ± 0.059 ab 1.16 ± 0.044 a 6.96 ± 0.076 b 0.34 ± 0.007 b 0.83 ± 0.005 b 12.0 ± 0.211 ab

Cd0 Tre2 6.67 ± 0.075 a 28.10 ± 0.073 a 1.13 ± 0.021 a 7.67 ± 0.055 a 0.41 ± 0.004 a 1.03 ± 0.020 a 13.0 ± 0.366 a

Cd1 Tre0 3.43 ± 0.045 f 22.29 ± 0.124 e 0.63 ± 0.004 d 4.73 ± 0.021 f 0.26 ± 0.004 c 0.69 ± 0.005 c 11.0 ± 0.422 bc

Cd1 Tre1 4.13 ± 0.049 e 23.72 ± 0.039 d 1.00 ± 0.013 b 4.93 ± 0.055 ef 0.26 ± 0.004 c 0.73 ± 0.007 c 11.0 ± 0.559 bc

Cd1 Tre2 5.33 ± 0.042 c 26.57 ± 0.055 bc 0.84 ± 0.004 c 6.17 ± 0.042 c 0.32 ± 0.007 b 0.88 ± 0.009 b 10.0 ± 0.366 cd

Cd2 Tre0 3.17 ± 0.091 f 19.20 ± 0.036 f 0.49 ± 0.004 e 3.83 ± 0.092 g 0.15 ± 0.004 e 0.57 ± 0.002 e 9.0 ± 0.634 d

Cd2 Tre1 4.67 ± 0.046 d 22.97 ± 0.046 de 0.60 ± 0.005 d 4.83 ± 0.057 ef 0.21 ± 0.004 d 0.64 ± 0.005 d 9.0 ± 0.332 d

Cd2 Tre2 4.97 ± 0.062 cd 24.13 ± 0.107 d 0.77 ± 0.006 c 5.56 ± 0.112 d 0.25 ± 0.004 c 0.70 ± 0.004 c 10.0 ± 0.211 cd

The values given in table show the mean of three replicates with ± S.E and different letters show the significant
differences at p < 0.05. Cd0, Cd1 and Cd2 indicate 0, 10 and 20 mg of Cd kg−1 of soil and Tre0, Tre1 and Tre2
indicate 0, 15 and 30 mM Trehalose.

Table 2. Effect of Tre supply on the growth and biomass traits of mung bean grown in hydroponic
culture under normal and Cd stress conditions.

Treatments Root Length (cm) Shoot Length (cm) Root Fresh
Weight (g)

Shoot Fresh
Weight (g)

Root Dry
Weight (g)

Shoot Dry
Weight (g)

Cd0 Tre0 3.55 ± 0.048 e 20.56 ± 0.077 c 0.61 ± 0.005 c 4.71 ± 0.087 d 0.21 ± 0.004 d 0.53 ± 0.006 d

Cd0 Tre1 4.88 ± 0.097 b 21.68 ± 0.062 b 0.80 ± 0.053 b 5.11 ± 0.082 c 0.28 ± 0.008 b 0.63 ± 0.007 c

Cd0 Tre2 5.79 ± 0.112 a 22.52 ± 0.054 a 0.96 ± 0.016 a 6.15 ± 0.075 a 0.35 ± 0.006 a 0.91 ± 0.011 a

Cd1 Tre0 3.06 ± 0.083 f 17.11 ± 0.086 f 0.44 ± 0.006 d 3.61 ± 0.048 f 0.17 ± 0.007 e 0.45 ± 0.008 e

Cd1 Tre1 3.95 ± 0.091 d 18.42 ± 0.104 e 0.62 ± 0.023 c 4.62 ± 0.062 d 0.24 ± 0.005 c 0.53 ± 0.006 d

Cd1 Tre2 4.42 ± 0.065 c 19.51 ± 0.113 d 0.79 ± 0.008 b 5.58 ± 0.051 b 0.29 ± 0.006 b 0.69 ± 0.008 b

Cd2 Tre0 2.81 ± 0.088 g 14.01 ± 0.098 h 0.31 ± 0.005 e 3.01 ± 0.063 g 0.12 ± 0.006 f 0.43 ± 0.004 e

Cd2 Tre1 3.56 ± 0.057 e 15.89 ± 0.087 g 0.46 ± 0.008 d 4.19 ± 0.071 e 0.17 ± 0.005 e 0.61 ± 0.006 c

Cd2 Tre2 4.34 ± 0.091 c 17.08 ± 0.111 f 0.60 ± 0.009 c 5.07 ± 0.092 c 0.21 ± 0.006 d 0.63 ± 0.005 c

The values given in the table show the mean of three replicates with ± S.E and different letters show the significant
differences at p < 0.05. Cd0, Cd1 and Cd2 indicate 0, 200 and 400 µM of Cd and Tre0, Tre1 and Tre2 indicate 0, 15
and 30 mM Trehalose.

3.2. Photosynthetic Pigments and Anthocyanin Contents

Cd stress significantly reduced the biosynthesis of photosynthetic pigments (chloro-
phyll and carotenoid) of mung bean plants. Conversely, Tre application significantly
increased chlorophyll and carotenoid contents under control and Cd stress. The highest
foliar spray of Tre (30 mM) significantly increased chlorophyll and carotenoid contents
under Cd stress (Figure 1). Cd stress also significantly reduced the carotenoid and antho-
cyanin contents (Figure 1). Nonetheless, Tre application (30 mM) improved carotenoid
contents by 22% and 55%, and anthocyanin contents by 13% and 50% under Cd stress
(10 and 20 mg kg−1) (Figure 1).
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Figure 1. Effect of foliar application of Tre on chlorophyll a (A); chlorophyll b (B); carotenoid (C); 
and anthocyanin (D) contents of mung bean plants grown under Cd stress. The values given in 
vertical bars are showing the mean of three replicates with ± S.E and the different letters above the 
bars under the same treatment show the significant differences at p < 0.05. 

Figure 1. Effect of foliar application of Tre on chlorophyll a (A); chlorophyll b (B); carotenoid (C); and
anthocyanin (D) contents of mung bean plants grown under Cd stress. The values given in vertical
bars are showing the mean of three replicates with ± S.E and the different letters above the bars
under the same treatment show the significant differences at p < 0.05.

3.3. Relative Water Content

The RWC was significantly reduced under Cd stress. However, the foliar application
of Tre markedly improved the RWC under normal and Cd stress conditions. Both levels of
Cd stress reduced the RWC and the maximum decrease was recorded under 20 mg kg−1
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Cd stress (Figure 2). On the other hand, Tre application (30 mM) enhanced the RWC of
mung bean plants by 3% and 9% at the lowest (10 mg kg−1) and the highest (20 mg kg−1)
Cd stress levels (Figure 2).
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Figure 2. Effect of foliar application of Tre on RWC (A); electrolyte leakage (B); H2O2 (C); and MDA 
(D) contents of mung bean grown under Cd stress. The values are the means of three replicates with 
± S.E and the different letters above the bars under the same treatment show the significant differ-
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however, Tre application showed a marked improvement in TSP and FAA under both Cd 

Figure 2. Effect of foliar application of Tre on RWC (A); electrolyte leakage (B); H2O2 (C); and MDA
(D) contents of mung bean grown under Cd stress. The values are the means of three replicates
with ± S.E and the different letters above the bars under the same treatment show the significant
differences at p < 0.05.
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3.4. Electrolyte Leakage, MDA and H2O2

Electrolyte leakage (EL) showed a significant increase under Cd stress conditions
(Figure 2). The maximum EL was recorded in the highest Cd (20 mg kg−1) level without
Tre application and the lowest EL was recorded in control (no Cd) with Tre application of
30 mM (Figure 2). As such, Tre supplementation significantly reduced the EL (Figure 2).
Foliar spray of Tre (30 mM) minimized the negative effects of EL and reduced the EL by 14%
and 29% under the 10 and 20 mg kg−1 Cd stress (Figure 2). Cd stress considerably induced
the MDA and H2O2 contents and their maximum increase was recorded under 20 mg kg−1

Cd stress (Figure 2). Conversely, Tre application (30 mM) markedly reduced MDA and
H2O2 accumulation, indicating its important role in ameliorating Cd stress (Figure 2).

3.5. Total Soluble Proteins and Free Amino Acids

The TSP and FAA showed a marked reduction with an increased in the Cd stress;
however, Tre application showed a marked improvement in TSP and FAA under both Cd
stress and normal conditions (Figure 3). The TSP was reduced by 46% and 89% whereas FAA
was decreased by 51% and 35% under Cd (10 and 20 mg kg−1). The foliar supplementation
of Tre (30 mM) significantly enhanced the TSP and FAA contents as compared to control
and foliar spray of 15 mM Tre under normal and Cd stress conditions (Figure 3).
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3.6. Antioxidant Enzymes Activities

The results demonstrated that the activities of antioxidant enzymes (CAT, POD, APX
and AsA) were significantly enhanced under Cd stress (Figure 4). Interestingly, Tre ap-
plication further enhanced the antioxidant enzymes’ activities. The foliar spray of Tre
(30 mM) increased CAT, POD, APX and AsA activities under both the Cd stress levels
(10 and 20 mg kg−1) (Figure 4).
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Figure 4. Effect of foliar spray of Tre on activities of CAT (A), POD (B), APX (C) and AsA (D) in
mung bean plants grown under Cd stress. The values given in vertical bars are showing the mean of
three replicates with ± S.E and the different letters above the bars under the same treatment show
the significant differences at p < 0.05.

3.7. Cd Concentration in Different Plant Organs

The concentration of Cd in the tested plant organs was significantly increased under
Cd. On the other hand, Tre application significantly decreased the Cd accretion in plant
organs (Figure 5). The maximum Cd concentration in roots and stems was recorded in the
highest Cd stress (20 mg kg−1) without Tre application, and the lowest Cd concentration
in root and stem was recorded in control (no Cd) with highest Tre application (30 mM)
(Figure 5). Likewise, in the leaves and grains, the maximum Cd concentration was recorded
under the 20 mg kg−1 Cd stress (Figure 5). Tre application (30 mM) significantly reduced
Cd accumulation in mung bean seeds and leaves (Figure 5).
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3.8. Yield Components

Cd stress significantly reduced the yield components of mung bean plants. However,
Tre ameliorated the negative effects of Cd stress and improved yield of mung bean plants
under normal and Cd stress conditions (Table 3). The longer pods (12.20 cm) with more
grains (12.67) were recorded under no Cd stress with Tre application of 30 mM, but the
shorter pods (8.02 cm) with minimum grains (8.33) were noted under Cd stress (20 mg kg−1)
without Tre application (Table 3). Cd stress levels also significantly reduced the grain weight
and grain yield (Table 3) and the maximum reduction was noted under 20 mg kg−1 Cd
stress conditions. Conversely Tre supply (30 mM) markedly improved the 100-grain weight
and grain yield under Cd stress (Table 3).
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Table 3. Effect of trehalose supply on yield traits of mung bean crop under different levels of Cd stress.

Treatments Pod Length (cm) Grains/Pod 100 Seed Weight (g) Grain Yield
(g pot−1)

Cd0 Tre0 11.13 ± 0.14 bc 11.33 ± 0.27 abc 6.24 ± 0.034 b 37.67 ± 1.29 bc

Cd0 Tre1 11.46 ± 0.21 b 12.33 ± 0.29 ab 6.33 ± 0.053 b 39.67 ± 1.49 ab

Cd0 Tre2 12.20 ± 0.16 a 12.67 ± 0.54 a 6.65 ± 0.062 a 44.00 ± 1.41 a

Cd1 Tre0 10.20 ± 0.17 e 9.67 d ± 0.53 de 5.03 ± 0.030 e 33.00 ± 1.25 d

Cd1 Tre1 10.62 ± 0.12 de 10.67 ± 0.27 bcd 5.47 ± 0.110 d 32.67 ± 1.18 d

Cd1 Tre2 10.87 ± 0.11 cd 11.00 ± 0.47 bcd 5.92 ± 0.072 c 35.00 ± 0.94 cd

Cd2 Tre0 8.02 ± 0.03 g 8.33 ± 0.29 f 4.13 ± 0.064 g 25.67 ± 0.98 f

Cd2 Tre1 8.60 ± 0.14 f 8.33 ± 0.30 f 4.44 ± 0.047 f 26.67 ± 0.72 e

Cd2 Tre2 9.07 ± 0.07 f 9.00 ± 0.48 e 4.61 ± 0.072 f 28.00 ± 1.69 e

The values given in the table are showing the mean of three replicates with ± S.E and different letters showing the
significant differences at p < 0.05. Cd0, Cd1 and Cd2 showing 0, 10 and 20 mg of Cd kg−1 of soil and Tre0, Tre1
and Tre2 indicating trehalose application at different levels, i.e., control (0 mM), 15 mM and 30 mM.

3.9. Pearson’s Correlation Analysis

The data of diverse traits recorded for soil-grown plants were subjected to Pearson’s
correlation analysis to determine the relationship among different parameters (Figure 3.9).
The results indicated that Cd concentration had positive linking with EL, MDA and H2O2
accumulation while it had negative correlations with growth, yield, TSA, FAA and RWC and
photosynthetic pigments. Moreover, a strong positive correlation was also noted between
Cd concentration and antioxidant activities. Conversely, Tre was positively correlated with
biomass, yield, photosynthetic pigments, TSP, FAA, RWC and anti-oxidant enzymes while
it had negative correlations with EL, MDA and H2O2 and Cd accumulation in different
plants’ organs.Plants 2022, 11, 822 14 of 19 
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CAT: catalase; EL: electrolyte leakage; FAA: free amino acid; GPP: grains/pod; G.Cd: grain Cd
concentration; GY: grain yield; H2O2: hydrogen peroxide; LPP: leavers per plant; L.Cd: leaf Cd
concentration; MDA: malondialdehyde; PL; pod length; POD: peroxidase; RFW: root fresh weight;
RL: root length; RDW: root dry weight; RWC: relative water content; R.Cd: root Cd concentration; SL:
shoot length; SFW: shoot fresh weight; SDW: shoot dry weight; S.Cd: stem Cd concentration; SW:
100 seed weight; TSP: total soluble protein.

4. Discussion

Heavy metals induced serious alterations in the physiological and biochemical pro-
cesses, growth, photosynthetic pigments and antioxidant defenses of plants [52]. Heavy
metals’ pollution is a serious concern to plant growth and human health; therefore, proper
technologies must be adopted to control the heavy metal pollution in order to ensure better
crop productivity and human health. Cadmium is a toxic and easily absorbed metal by
plants and causes negative impacts on plant growth and development [53]. In the present
study, Cd stress induced oxidative stress in mung bean plants, resulting in significant
reductions in growth and biomass production [54]. Cd stress also inhibited the nutrients
acquisition and photosynthesis which reduced the assimilates’ production and thereby
caused significant reductions in growth [55,56]. On the other hand, Tre supply significantly
increased the growth and biomass production. This increase in plant growth and biomass
production by Tre could be attributed to the Tre-mediated increases in RWC and photosyn-
thetic performance and reductions in MDA and H2O2 accumulation due to the significant
increases in antioxidant activities. We also hypothesized that Tre might also reduce the
Cd uptake by forming Tre-Cd complexes and therefore improved the plant growth and
biomass production. Trehalose possesses a relatively low surface potential and it readily
interacts with Cd, resulting in reduced Cd uptake and improved growth and biomass [57].

Photosynthesis is an imperative plant physiological process that could be severely
inhibited by Cd stress, based on the Cd doses applied [10,58]. In the present study, Cd
stress markedly reduced the photosynthetic pigments. This was in line with the previous
reports which revealed that Cd stress could reduce the absorption of Mg, Fe, K and P from
soil and reduce the formation of leaf porphyrin rings, resulting in a marked reduction in
chlorophyll synthesis [59] owing to the fact that Mg is a building block in the formation of
chlorophyll contents. However, Tre supplementation significantly increased the synthesis
of photosynthetic pigments, indicating that Trehalose supply might protect the membrane
integrity and photosynthetic apparatus from oxidative stress via the reduction of the activity
of chlorophyll degrading enzymes under stress conditions [60].

In the present study, RWC was significantly reduced under Cd stress. This could
be attributed to the fact that Cd stress could reduce the osmotic potential and water
uptake and subsequently reduce RWC [61]. Moreover, ABA-mediated stomatal closure
due to Cd stress could reduce the transpiration pull and led to limited water uptake by
plant roots and entails lower RWC in mung bean plants. On the other hand, Tre supply
significantly improved RWC under both normal and Cd stress conditions, indicating that
Tre supplementation protects the membrane and osmotic potential and scavenges the ROS
formation and, therefore, could improve the water retention in plant organs under stress
conditions [62]. Moreover, it is also hypothesized that Tre might reduce the ABA-mediated
stomata closure and enhance the water uptake and RWC under Cd stress. In the present
study, EL, H2O2 and MDA also showed a significant increase with increasing the Cd stress.
Such increase is possibly due to alterations in membrane structure and changes in cellular
homeostasis. However, Tre supply reduced the electrolyte leakage which might be due
to the maintenance of membrane integrity and scavenging of ROS due to the increases in
antioxidant activities [63]. The exposure of plants to Cd stress induced the production of
ROS which damages the membrane [5]. However, in the present study, Tre supplied by
foliar application markedly reduced the oxidative stress by decreasing the production of
H2O2 and MDA contents under Cd stress. The reduction in MDA was due to the decrease
in membrane damage. Tre supplementation might maintain the appreciable levels of K+

and Ca2+ under Cd which protect the membranes from oxidative stress and thereby could
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reduce MDA and EL under stress conditions. Tre might be participating in stress signaling
and triggers osmolytes’ accumulation and antioxidant activities and therefore reduces the
ROS production under Cd stress.

The exposure of plants to heavy metals might increase the activity of anti-oxidants;
however, the very high metal concentration might destroy the protective enzymes system,
and thereby decreases the antioxidant activities [64]. The antioxidant enzymes (CAT, POD,
and APX) activity was markedly increased under Cd stress. Furthermore, Tre application
further increased the antioxidant enzyme activities. Similarly, Tre supply also enhanced
the activity of antioxidants which play a crucial role in counteracting the heavy metal-
induced stress [65]. Therefore, it can also be concluded that Tre directly mediates the
signaling transduction network or indirectly improves osmolytes’ accumulations which
trigger antioxidant activities and encounter Cd-induced toxic effects.

Proteins play multipurpose functions in plants; however, their activity is degraded
under different metal stresses. In the current study, TSP and FAA were significantly
reduced under Cd stress. This could be due to the fact that Cd stress toxicity increases
protease activity, which triggers the degradation of proteins [66], resulting in reduced
protein accumulation under Cd stress. Cd toxicity disrupts the metabolism of amino acids,
and changes in amino acid level could play a crucial role in plant responsiveness to Cd
stress [67,68]. Tre supply increased the concentrations of FAA and TSP under Cd stress.
This increase could be attributed to the ability of Tre to stabilize proteins and dehydrated
enzymes involved in protein and amino acid synthesis. Plant species varied in their ability
to absorb Cd from the soil and transport it into different plant organs [69]. The quantity
of Cd absorbed by plants and its translocation to shoots depend on its bonding with the
extracellular matrix, roots efflux, complexion within cells and transport efficiency [70].
In the current study, it was noted that the roots accumulated more Cd as compared to
stems, leaves and grains, which could be attributed to the fact that the roots came into
direct contact with Cd. However, Tre supplementation had an inhibitory effect on Cd
accumulation and significantly reduced Cd accumulation in mung bean plant organs. A
possible reason for this reduction could be that Tre acts as barrier to the Cd uptake in plant
root which, therefore, tends to reduce the Cd transportation and accumulation in upper
plant organs. Furthermore, Tre might also form complexes with Cd and reduce its uptake
by plant roots and therefore reduce the Cd accumulation.

Cd toxicity significantly reduced the yield traits of mung bean. This reduction in yield
could be attributed to the elevated oxidative stress levels, accumulation of MDA and H2O2,
Cd uptake and pronounced decreases in photosynthetic pigments, RWC, and protein and
amino acids’ accumulation. Tre supplementation considerably increased the yield traits
under normal and Cd stress conditions. Tre protected the cell membrane and proteins and
ensured better chlorophyll synthesis, leaf RWC, TSP and FAA accumulation, antioxidant
activities, this markedly improved the yield traits [71].

5. Conclusions

Tre supplementation significantly enhanced Cd stress tolerance of mung bean crop.
Cd stress markedly reduced the mung bean growth and yield which was associated with
significant reduction in photosynthetic pigments and increases in ROS production and
MDA accumulation. Nonetheless, Tre supply markedly improved mung bean yield by de-
creasing the Cd uptake, improving photosynthetic pigments, TSP and FAA and scavenging
ROS by triggering the anti-oxidant enzymes. Therefore, these findings concluded that Tre
supply could strengthen mung bean anti-oxidant defenses and ameliorate the Cd-induced
deleterious effects on mung bean growth and yield.
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