Advances in Soil Fertility Management for Sustainable Crop Production

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant–Soil Interactions".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 19578

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Biology, University of Cadi Ayyad, Marrakech 40000, Morocco
Interests: plants; AMF; PGPR; abiotic and biotic stress

Special Issue Information

Dear Colleagues,

As our agricultural systems face mounting challenges due to climate change, soil degradation, and limited resources, it is crucial that we deepen our understanding of the intricate relationships between soil health, nutrient management, and crop productivity.

This Special Issue aims to showcase  the latest research and reviews that delve into innovative strategies, technologies, and practices for optimizing soil fertility to ensure sustainable crop production. Contributors are invited to submit review articles or original research papers focusing on a wide range of topics, including but not limited to soil health assessment, nutrient management, soil amendments, cover cropping, precision agriculture, organic farming practices, and the impact of climate change on soil fertility.

Join us in shaping the future of sustainable crop production through innovative soil fertility management strategies. Together, we will pave the way toward a more resilient and productive agricultural future.

Dr. Mohamed Ait-El-Mokhtar
Dr. Abdelilah Meddich
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • soil fertility/health
  • crop production
  • sustainable agriculture
  • nutrient management
  • organic amendment
  • microbial amendment
  • soil remediation/restoration
  • soil fertilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 11644 KiB  
Article
Construction of a Green and Sustainable Cultivation Model for Annual Forage Oat in Alpine Ecosystems: Optimization and Synergistic Mechanisms of Combined Application of Microbial Fertilizers and Organic Fertilizers
by Zongcheng Cai, Jianjun Shi, Liangyu Lv, Pei Gao, Hairong Zhang, Fayi Li, Shouquan Fu, Qingqing Liu and Shancun Bao
Plants 2025, 14(9), 1271; https://doi.org/10.3390/plants14091271 - 22 Apr 2025
Abstract
The aim of this study was to establish a green fertilization regime combining microbial fertilizers and livestock manure organic fertilizer for two dominant oat cultivars (Avena sativa L. ‘Baiyan No.7’ and ‘Qingyin No.2’) in alpine ecosystems, providing technical support for sustainable forage [...] Read more.
The aim of this study was to establish a green fertilization regime combining microbial fertilizers and livestock manure organic fertilizer for two dominant oat cultivars (Avena sativa L. ‘Baiyan No.7’ and ‘Qingyin No.2’) in alpine ecosystems, providing technical support for sustainable forage production systems in grassland pastoral areas of the Qinghai-Tibet Plateau. The experiment was conducted following the principles of a randomized block design, with five application rates each of effective microbial fertilizer (EM) and compound microbial fertilizer (FH) applied in combination with 18,000 kg·hm−2 of livestock manure organic fertilizer to systematically analyze their effects on oat agronomic traits, yield quality, and soil health. Key results demonstrated the following: for Avena sativa ‘Baiyan No.7’, effective microbial fertilizer (EM) application at 15.00 kg·hm−2 significantly increased plant height by 41.29% (p < 0.05), while effective microbial fertilizer (EM) at 18.75 kg·hm−2 optimized stomatal conductance and the transpiration rate by 73.29% and 46.42%, respectively. For Avena sativa L.‘Qingyin No.2’, compound microbial fertilizer (FH) application at 22.50 kg·hm−2 enhanced plant height and relative chlorophyll content (SPAD value) of the flag leaf by 50.92% and 47.75%. Yield analysis revealed that compound microbial fertilizer (FH) application at 22.50 kg·hm−2 increased the fresh forage yield and dry matter yield of ‘Baiyan No.7’ by 34.53% and 38.64%, respectively, with crude protein content reaching 11.02%. Maximum fresh forage yield (38,073.00 kg·hm−2) for ‘Qingyin No.2’ was achieved with effective microbial fertilizer (EM) at 11.25 kg·hm−2, while compound microbial fertilizer (FH) at 22.50 kg·hm−2 facilitated synergistic accumulation of crude protein (12.57%) and soluble sugars (15.58%). Soil organic carbon increased by 28.85% under compound microbial fertilizer (FH) at 22.50 kg·hm−2 for ‘Baiyan No.7’, and by 26.21% under effective microbial fertilizer (EM) at 18.75 kg·hm−2 for ‘Qingyin No.2’. In summary, a cultivar-specific green fertilization system was established: for Avena sativa L. ‘Baiyan No.7’: the application of 18.75 kg·hm−2 effective microorganisms fertilizer with 18,000 kg·hm−2 organic manure; for Avena sativa L. ‘Qingyin No.2’: the application of 22.50 kg·hm−2 compound microbial fertilizer with 18,000 kg·hm−2 organic manure. This system achieved triple sustainability objectives in alpine oat production: enhancing yield, optimizing quality, and improving soil health. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

14 pages, 1811 KiB  
Article
Effect of Different Fertilization on Soil Fertility, Biological Activity, and Maize Yield in the Albic Soil Area of China
by Xingzhu Ma, Yue Zhao, Yu Zheng, Lingli Wang, Yulan Zhang, Yi Sun, Jinghong Ji, Xiaoyu Hao, Shuangquan Liu and Nan Sun
Plants 2025, 14(5), 810; https://doi.org/10.3390/plants14050810 - 5 Mar 2025
Cited by 1 | Viewed by 591
Abstract
Fertilization is a key management practice for maintaining or improving soil fertility and ensuring grain yield in agro-ecosystems. Nevertheless, as a low-yield soil, how fertilization strategies impact the status of albic soil physical and chemical properties, biological activity, and crop yield are poorly [...] Read more.
Fertilization is a key management practice for maintaining or improving soil fertility and ensuring grain yield in agro-ecosystems. Nevertheless, as a low-yield soil, how fertilization strategies impact the status of albic soil physical and chemical properties, biological activity, and crop yield are poorly understood. Through a two-year positioning experiment, the albic soil fertility characteristics (physical, chemical, and biological) and changes in maize yield under different fertilization were studied. Three treatments were established: (1) conventional fertilization (chemical fertilizer) (T1), (2) optimized fertilization 1 (low amount of organic fertilizer + chemical fertilizer) (T2), and (3) optimized fertilization 2 (high amount of organic fertilizer + chemical fertilizer) (T3). The results indicated that, compared with T1, the soil bulk density of T2 and T3 treatments decreased, the average solid phase ratio of soil decreased by 8.2%, and the average liquid and gas phase ratios increased by 7.2% and 10.2%, respectively. The soil organic matter (SOM) and soil organic carbon storage (SOCS) under treatment of optimized fertilization were significantly higher than under T1, with an average increase of 10.1% for SOM and 8.8% for SOCS, respectively. T3 significantly increased the contents of alkali-hydrolyzable nitrogen, available phosphorus, and available potassium, while different fertilizations had little effect on soil pH. T2 and T3 significantly increased activities of soil urease, sucrase, phosphatase, and catalase, with an average increase of 33.7%, 56.9%, 32.0%, and 6.7%, respectively. The numbers of soil bacteria and actinomycetes under T3 increased significantly by 30.2% and 22.0% compared to T1, while the number of fungi decreased by 6.7%. The total number of soil microorganisms increased significantly by 29.0% of T3, and the proportion of soil bacteria to the total number of microorganisms increased, while the proportion of fungi and actinomycetes decreased. The maize yield of T3 was significantly higher than under other treatments, with an increase of 2368.5 kg/ha compared to T1. Correlation analysis showed that the contents of available nutrients and organic matter, the numbers of soil bacteria and actinomycetes, and the activities of soil urease and phosphatase had the most significant impact on maize yield. The optimized fertilization, which was the organic fertilizer combined with chemical fertilizer, can improve the physical properties of albic soil, increase soil organic matter content, organic carbon storage, available nutrient content, and soil biological activity, also for maize yield. Therefore, the optimized fertilization in albic soil of Northeast China is a promising and important management option for improved soil quality and grain yield. This work provides a theoretical basis and technical reference for efficient fertilization. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

13 pages, 2714 KiB  
Article
Improving Soybean Development and Grain Yield by Complementary Inoculation with Growth-Promoting Bacteria Azospirillum, Pseudomonas, Priestia, and Bacillus
by Robélio Leandro Marchão, Gustavo Cassiano da Silva, Solange Rocha Monteiro de Andrade, Fábio Bueno dos Reis Junior, Márcio Pereira de Barros Júnior, Richard Hemanwel Haphonsso and Arminda Moreira de Carvalho
Plants 2025, 14(3), 402; https://doi.org/10.3390/plants14030402 - 29 Jan 2025
Viewed by 887
Abstract
Bioinputs are natural products applied to crops that contribute to more sustainable agriculture by boosting yields and reducing environmental impacts. In Brazil, the use of bioinputs such as Bradyrhizobium in soybean has been consolidated, but the expansion of on-farm bioinput production is currently [...] Read more.
Bioinputs are natural products applied to crops that contribute to more sustainable agriculture by boosting yields and reducing environmental impacts. In Brazil, the use of bioinputs such as Bradyrhizobium in soybean has been consolidated, but the expansion of on-farm bioinput production is currently initiating a new revolution. Furthermore, applications of bioinputs to cash crops in Brazil have shed light on the great potential of such growth-promoting microorganisms (GMPs) to improve nutrient uptake and increase productivity. This study explores the effect of the complementary inoculation with growth-promoting bacteria of post-emergence soybean, previously inoculated with Bradyrhizobium spp. Five treatments with growth-promoting bacteria were evaluated: T1—Control (no inoculation); T2—Azospirillum brasilense; T3—Pseudomonas fluorescens and Azospirillum brasilense; T4—Priestia aryabhattai, Bacillus haynesii, and Bacillus circulans; and T5—Priestia megaterium and Bacillus subtilis. In comparison with the control, all treatments with growth-promoting bacteria of the genera Azospirillum, Pseudomonas, Priestia, and Bacillus, applied after soybean emergence, induced 4–7% higher grain yields. Co-inoculation with Priestia megaterium and Bacillus subtilis (treatment T5) resulted in a higher 1000-grain weight, while Priestia aryabhattai, Bacillus haynesii, and Bacillus circulans (treatment T4) increased the number of pods and shoot dry weight. Our conclusion is that bioinputs increase soybean productivity and make agriculture more sustainable and efficient. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Graphical abstract

17 pages, 6652 KiB  
Article
Synergetic Effect of Potassium, Biochar and Cattle Manure on the Growth and Yield of Maize, and Soil Physio-Chemical Characteristics
by Zeqiang Shao, Xiuzhi Zhang, Jamal Nasar and Harun Gitari
Plants 2024, 13(23), 3345; https://doi.org/10.3390/plants13233345 - 28 Nov 2024
Viewed by 945
Abstract
Biochar (BC) and cattle manure (CM) are carbon-nutrient-rich organic substances and have long been used to improve crop yield and soil fertility. Nevertheless, their combined effect with potassium (K) fertilizer remains unknown. Against the previous context, a 2-year (2021–2022) field experiment was conducted [...] Read more.
Biochar (BC) and cattle manure (CM) are carbon-nutrient-rich organic substances and have long been used to improve crop yield and soil fertility. Nevertheless, their combined effect with potassium (K) fertilizer remains unknown. Against the previous context, a 2-year (2021–2022) field experiment was conducted to assess the effect of K fertilization coupled with BC and CM on the growth and yield of maize and soil physio-chemical characteristics. The K application combined with BC and CM increased (p ≤ 0.05) the majority of the growth indices of maize crop compared with CK. Compared with CK, the combined application of K (60 kg K ha−1) with BC and CM resulted in an increased number of seeds cob−1 by up to 451 and 465, and up to 383 and 396, the 1000-seed weight up to 22 and 23 g, and up to 27 and 34 g, and the grain yield up to 1979 and 2900 and up to 3240 and 3341 kg ha−1, respectively, in 2021 and 2022. The integrated application of these inputs increased the chlorophyll of maize crops by 29 and 36% and by 30 and 44%, respectively, in 2021 and 2022. Such application also increased the photosynthetic activities of maize such as transpiration rate (Tr), stomatal conductance (Gs), and photosynthetic rate (Pn) by 21 and 23%, 143 and 110%, and by 64 and 66% in 2021 and by 19 and 30%, 163 and 118%, and by 63 and 72% in 2022. Similarly, the combined application of K, BC, and CM increased the K uptake of maize due to an increase in the soil extractable K. Equally, soil total N and organic matter improved under the combined application of K, BC, and CM. However, it did not affect the soil extractable P in 2021 but increased it in 2022. Conversely, these applications reduced (p < 0.05) the soil electrical conductivity, sodium adsorption ratio, and bulk density. This suggests that K fertilization combined with BC and CM enhances the growth and yield of maize by improving the soil nutrients availability, increasing soil organic matter, and enhancing soil structure and moisture retention. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

19 pages, 2442 KiB  
Article
Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth
by Zhihai Wu, Bei Xue, Shiwen Wang, Xu Xing, Min Nuo, Xin Meng, Meikang Wu, Hao Jiang, Huimin Ma, Meiying Yang, Xiaoshuang Wei, Guangxin Zhao and Ping Tian
Plants 2024, 13(21), 2957; https://doi.org/10.3390/plants13212957 - 23 Oct 2024
Cited by 1 | Viewed by 1625
Abstract
Under the one-season-a-year cropping pattern in Northeast China, continuous cropping is one of the main factors contributing to the degradation of black soil. Previous studies (on maize–soybean, maize–peanut, and maize–wheat intercropping) have shown that intercropping can alleviate this problem. However, it is not [...] Read more.
Under the one-season-a-year cropping pattern in Northeast China, continuous cropping is one of the main factors contributing to the degradation of black soil. Previous studies (on maize–soybean, maize–peanut, and maize–wheat intercropping) have shown that intercropping can alleviate this problem. However, it is not known whether intercropping is feasible for maize and rice under dry cultivation, and its effects on yield and soil fertility are unknown. A three-year field-orientation experiment was conducted at Jilin Agricultural University in Changchun city, Jilin Province, China, consisting of three cropping regimes, namely rice under dry cultivation–maize intercropping (IRM), sole rice under dry cultivation (SR), and sole maize (SM). All straw was fully returned to the field after mechanical harvesting. Rice under dry cultivation–maize intercropping with a land-equivalent ratio of 1.05 (the average of three years values) increased the total yield by 8.63% compared to the monoculture system. The aggressivity (A), relative crowding coefficient (K), time–area-equivalent ratio (ATER), and competition ratio (CR) value were positive or ≥1, also indicating that the rice under dry cultivation–maize intercropping had a yield advantage of the overall intercropping system. This is because the intercropped maize root length density (RLD) increased by 33.94–102.84% in the 0–40 cm soil layer, which contributed to an increase in the soil porosity (SP) of 5.58–10.10% in the 0–30 cm soil layer, an increase in the mean weight diameter of soil aggregates (MWD) of 3.00–15.69%, an increase in the geometric mean diameter of soil aggregates (GMD) of 8.16–26.42%, a decrease in the soil bulk density (SBD) of 4.02–7.35%, and an increase in the soil organic matter content (SOM) of 0.60–4.35%. This increased the water permeability and aeration of the soil and facilitated the absorption of nutrients and water by the root system and their transportation above ground, and the plant nitrogen, phosphorus, and potassium accumulation in the intercropping system were significantly higher than that in monoculture treatment, further promoting the total yield of intercropping. This suggests that rice under a dry cultivation–maize intercropping system is feasible in Northeast China, mainly because it promotes belowground root growth, improves the soil environment, and increases the total yield of intercropping. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

24 pages, 15028 KiB  
Article
Application of Magnetized Ionized Water and Bacillus subtilis Improved Saline Soil Quality and Cotton Productivity
by Zhanbo Jiang, Quanjiu Wang, Songrui Ning, Shudong Lin, Xiaoqin Hu and Zhaoxin Song
Plants 2024, 13(17), 2458; https://doi.org/10.3390/plants13172458 - 2 Sep 2024
Cited by 4 | Viewed by 1776
Abstract
Soil salinization, a significant global challenge, threatens sustainable development. This study explores the potential of magnetized ionized water irrigation and Bacillus subtilis application to mitigate this issue. The former method is hypothesized to enhance soil salt leaching, while the latter is expected to [...] Read more.
Soil salinization, a significant global challenge, threatens sustainable development. This study explores the potential of magnetized ionized water irrigation and Bacillus subtilis application to mitigate this issue. The former method is hypothesized to enhance soil salt leaching, while the latter is expected to improve soil nutrient availability, thereby increasing microbial diversity. To address the unclear impact of these interventions on soil quality and cotton productivity, this study employs four different experimental methods: magnetized ionized water irrigation (M), application of 45 kg ha−1 B. subtilis (B), a combination of 45 kg ha−1 B. subtilis with magnetized ionized water irrigation (MB), and a control treatment with no intervention (CK). This study aims to clarify the effects of these treatments on soil bulk density (BD), field capacity (FC), salinity and alkalinity, nutrient content, microbial activity, and cotton crop yield and quality. Additionally, it aims to evaluate the efficacy of these methods in improving saline soil conditions by developing a soil quality index. The results showed that using magnetized ionized water for irrigation and applying B. subtilis, either alone or together, can effectively lower soil pH and salt levels, enhance microbial diversity and abundance, and improve the yield and quality of cotton. Notably, B. subtilis application significantly decreased BD and enhanced FC and nutrient content (p < 0.05). A correlation was found where soil nutrient content decreased as pH and salt content increased. Furthermore, a strong correlation was observed between the major soil bacteria and fungi with BD, FC, and salt content. Comparatively, M, B, and MB significantly boosted (p < 0.01) the soil quality index by 0.21, 0.52, and 0.69 units, respectively, and increased (p < 0.05) cotton yield by 5.7%, 14.8%, and 20.1% compared to CK. Therefore, this research offers eco-friendly and efficient methods to enhance cotton production capacity in saline soil. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

19 pages, 3488 KiB  
Article
Sugarcane/Soybean Intercropping with Reduced Nitrogen Application Synergistically Increases Plant Carbon Fixation and Soil Organic Carbon Sequestration
by Tantan Zhang, Yali Liu and Lin Li
Plants 2024, 13(16), 2337; https://doi.org/10.3390/plants13162337 - 22 Aug 2024
Viewed by 1242
Abstract
Sugarcane/soybean intercropping and reduced nitrogen (N) application as an important sustainable agricultural pattern can increase crop primary productivity and improve soil ecological functions, thereby affecting soil organic carbon (SOC) input and turnover. To explore the potential mechanism of sugarcane/soybean intercropping affecting SOC sequestration, [...] Read more.
Sugarcane/soybean intercropping and reduced nitrogen (N) application as an important sustainable agricultural pattern can increase crop primary productivity and improve soil ecological functions, thereby affecting soil organic carbon (SOC) input and turnover. To explore the potential mechanism of sugarcane/soybean intercropping affecting SOC sequestration, a two-factor long-term field experiment was carried out, which included planting pattern (sugarcane monocropping (MS), sugarcane/soybean 1:1 intercropping (SB1), and sugarcane/soybean 1:2 intercropping (SB2)) and nitrogen addition levels (reduced N application (N1: 300 kg·hm−2) and conventional N application (N2: 525 kg·hm−2)). The results showed that the shoot and root C fixation in the sugarcane/soybean intercropping system were significantly higher than those in the sugarcane monocropping system during the whole growth period of sugarcane, and the N application level had no significant effect on the C fixation of plants in the intercropping system. Sugarcane/soybean intercropping also increased the contents of total organic C (TOC), labile organic C fraction [microbial biomass C (MBC) and dissolved organic C (DOC)] in the soil during the growth period of sugarcane, and this effect was more obvious at the N1 level. We further analyzed the relationship between plant C sequestration and SOC fraction content using regression equations and found that both plant shoot and root C sequestration were significantly correlated with TOC, MBC, and DOC content. This suggests that sugarcane/soybean intercropping increases the amount of C input to the soil by improving crop shoot and root C sequestration, which then promotes the content of each SOC fraction. The results of this study indicate that sugarcane/soybean intercropping and reduced N application patterns can synergistically improve plant and soil C fixation, which is of great significance for improving crop yields, increasing soil fertility, and reducing greenhouse gas emissions from agricultural fields. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

17 pages, 2159 KiB  
Article
Halotolerant Microorganism-Based Soil Conditioner Application Improved the Soil Properties, Yield, Quality and Starch Characteristics of Hybrid Rice under Higher Saline Conditions
by Wenyu Jin, Lin Li, Guohui Ma and Zhongwei Wei
Plants 2024, 13(16), 2325; https://doi.org/10.3390/plants13162325 - 21 Aug 2024
Cited by 8 | Viewed by 1081
Abstract
Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch [...] Read more.
Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch in hybrid rice under saline conditions. The experimental treatments were composed of two high-quality hybrid rice varieties, i.e., ‘Y Liangyou 957’ (YLY957) and Jing Liangyou 534 (JLY534), and two soil amendment treatments, i.e., the application of SC at control levels and 2250 kg hm−2, or ‘CK and SC’, respectively. The crop was subjected to a mixture of fresh and sea water (EC 11 dS/m). The results demonstrated that the application of SC significantly enhanced the rice yield under salt stress conditions owing to an increase in the number of grains per panicle. Furthermore, SC was found to be effective in improving the organic matter and soil nutrient content. Furthermore, the application of SC resulted in an improvement in antioxidant defense, higher leaf SPAD values, and greater crop biomass, as well as the translocation of photo-assimilates at the heading stage. The application of SC not only improved the milling and appearance quality but also enhanced the taste value of rice by increasing the amylose and reducing the protein content. Furthermore, the application of SC also decreased the indentations on the surfaces of starch granules and cracks on the edges of the granules. The rice varieties subjected to SC exhibited excellent pasting properties, characterized by reduced proportions of amylopectin short chains and a lower gelatinization temperature and enthalpy of gelatinization. Overall, these findings serve to reinforce the efficacy of soil conditioner as a valuable tool to improve rice productivity and sustainability with improved rice grain quality under saline conditions. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 1844 KiB  
Article
The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress
by Fadoua Mekkaoui, Mohamed Ait-El-Mokhtar, Nada Zaari Jabri, Ilham Amghar, Soukaina Essadssi and Abdelaziz Hmyene
Plants 2024, 13(16), 2225; https://doi.org/10.3390/plants13162225 - 11 Aug 2024
Cited by 5 | Viewed by 1586
Abstract
Salinity poses a significant challenge to tomato plant development and metabolism. This study explores the use of biostimulants as eco-friendly strategies to enhance tomato plant tolerance to salinity. Conducted in a greenhouse, the research focuses on the Solanum lycopersicum L. behavior under saline [...] Read more.
Salinity poses a significant challenge to tomato plant development and metabolism. This study explores the use of biostimulants as eco-friendly strategies to enhance tomato plant tolerance to salinity. Conducted in a greenhouse, the research focuses on the Solanum lycopersicum L. behavior under saline conditions. Tomato seeds were treated with arbuscular mycorrhizal fungi (AMF), compost, and their combination under both non-saline and saline conditions (0 and 150 mM NaCl). Plant height, number of flowers and fruits, shoot fresh weight, and root dry weight were negatively impacted by salt stress. The supplementation with compost affected the colonization of AMF, but the application of stress had no effect on this trait. However, the use of compost and AMF separately or in combination showed positive effects on the measured parameters. At the physiological level, compost played a beneficial role in increasing photosynthetic efficiency, whether or not plants were subjected to salinity. In addition, the application of these biostimulants led to an increase in nitrogen content in the plants, irrespective of the stress conditions. AMF and compost, applied alone or in combination, showed positive effects on photosynthetic pigment concentrations and protein content. Under salt stress, characterized by an increase in lipid peroxidation and H2O2 content, the application of these biostimulants succeeded in reducing both these parameters in affected plants through exhibiting an increase in antioxidant enzyme activity. In conclusion, incorporating compost, AMF, or their combined application emerges as a promising approach to alleviate the detrimental impacts of salt stress on both plant performances. These findings indicate optimistic possibilities for advancing sustainable and resilient agricultural practices. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

21 pages, 4222 KiB  
Article
Lettuce (Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil
by Konstantina Mitsigiorgi, Georgia C. Ntroumpogianni, Efstathios A. Katsifas, Dimitris G. Hatzinikolaou, Konstantinos Chassapis, Elisavet Skampa, Aikaterina L. Stefi and Nikolaos S. Christodoulakis
Plants 2024, 13(13), 1872; https://doi.org/10.3390/plants13131872 - 6 Jul 2024
Viewed by 1605
Abstract
This study aimed to highlight the positive effects of various recycled organic substrates on lettuce plants (Lactuca sativa L.) and to promote sustainable waste management practices, contributing to the concept of a circular economy. Over a two-month period, the growth potential and [...] Read more.
This study aimed to highlight the positive effects of various recycled organic substrates on lettuce plants (Lactuca sativa L.) and to promote sustainable waste management practices, contributing to the concept of a circular economy. Over a two-month period, the growth potential and rhizosphere microflora of lettuce plants grown in soil amended with different recycled substrates were investigated. All data were compared, and the effects of the culture substrates were evaluated. All groups containing soil improvers offered a significant increase in the number of leaves per plant and, in two cases, an increase in dry biomass as well as an increase in the concentration of all leaf pigments. Both MDA and H2O2 concentrations were the lowest in two groups containing soil improvers (VG 5% and PLUS 10%). At the end of the culture period, isolation and culture of bacteria from the plant rhizosphere were performed. Different bacterial strains were isolated and tested for the production of antimicrobial agents against six microbial indicators (B. subtilis, E. coli, S. aureus, S. cerevisiae, C. albicans, and P. aeruginosa). The greater percentage of the isolated strains showed an ability to inhibit the growth of the B. subtilis index. Most of the strains with antimicrobial activity were isolated from the soil samples of the plain soil group and the soil amended with the commercial fertilizer. Three of the isolated strains originating from the Ginagro 5% group are multiproducers as they inhibit the growth of three microbial indicators or more. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 2953 KiB  
Article
Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.)
by Ioanna Kakabouki, Ioannis Roussis, Magdalini Krokida, Antonios Mavroeidis, Panteleimon Stavropoulos, Stella Karydogianni, Dimitrios Beslemes and Evangelia Tigka
Plants 2024, 13(13), 1852; https://doi.org/10.3390/plants13131852 - 5 Jul 2024
Viewed by 2249
Abstract
Processing tomato (Lycopersicon esculentum Mill.) is regarded amongst the most dominant horticultural crops globally. Yet, due to its elevated water and fertilization needs, its environmental footprint is significantly high. The recent efforts to reduce the footprint of agriculture have rekindled the search [...] Read more.
Processing tomato (Lycopersicon esculentum Mill.) is regarded amongst the most dominant horticultural crops globally. Yet, due to its elevated water and fertilization needs, its environmental footprint is significantly high. The recent efforts to reduce the footprint of agriculture have rekindled the search for optimized fertilization regimes in tomato. The aim of the present study was to assess the effect of different urea fertilizers and tomato pomace-based composts on the performance and quality traits of processing tomato. A two-year field experiment was conducted in the Larissa region, Central Greece, during 2018–2019. The experiment was set up in a randomized complete block design (RCBD), with five treatments: control, urea (Urea), urea with nitrification and urease inhibitors (Urea + NI + UI), processing tomato pomace with farmyard manure (TP + FM), and processing tomato pomace with compost from plant residues (TP + CM). Measurements included soil total nitrogen (STN), soil organic matter (SOM), root length density (RLD), arbuscular mycorrhiza fungi (AMF) colonization, dry weight per plant, fruit yield (number per plant, total yield, weight, diameter), fruit firmness, total soluble solids (TSS), titratable acidity (TA), lycopene content and yield, and fruit surface color (L*, a*, b*, CI). Overall, the best results in soil properties and quality traits were reported in the organic fertilization treatments (STN, SOM, AMF, TSS, TA, lycopene content, L*, a*, b*) and the differences among TP + FM and TP + CM were insignificant in their majority. On the contrary, fruit yield and its components were significantly improved in Urea + NI + UI. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

14 pages, 2080 KiB  
Article
Effect of Glycolipids Application Combined with Nitrogen Fertilizer Reduction on Maize Nitrogen Use Efficiency and Yield
by Xianghai Meng, Qingshan Dong, Baicheng Wang, Zheng Ni, Xingzhe Zhang, Chunguang Liu, Wenquan Yu, Jie Liu, Xinrui Shi, Dehai Xu and Yan Duan
Plants 2024, 13(9), 1222; https://doi.org/10.3390/plants13091222 - 28 Apr 2024
Cited by 2 | Viewed by 1141
Abstract
Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use [...] Read more.
Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0–20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26–11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 326 KiB  
Review
Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain
by Bhakti Jadhav and Agnieszka Medyńska-Juraszek
Plants 2024, 13(17), 2526; https://doi.org/10.3390/plants13172526 - 8 Sep 2024
Cited by 3 | Viewed by 3382
Abstract
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles [...] Read more.
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles (<100 nm) can be taken up by the root system and transferred to aboveground plant parts. Furthermore, the presence of microplastic in soil affects plant growth disturbing metabolic processes in plants, thus reducing yields and crop quality. Some of the adverse effects of microplastic on plants have been already described in the meta-analysis; however, this review provides a comprehensive overview of the latest findings about possible adverse effects and risks related to wide microplastic occurrence in soil on crop production safety, including topics related to changes of pesticides behavior and plant pathogen spreading under the presence MP and possibly threaten to human health. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Back to TopTop