Special Issue "Anticancer Drugs"

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: 30 April 2019

Special Issue Editors

Guest Editor
Prof. Dr. Mary J Meegan

School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2 D02 R590, Ireland
Website | E-Mail
Interests: anticancer drug design; breast cancer; novel antiestrogens; tubulin targeting agents; azetidinones, antiestrogen-drug conjugates; estrogen receptor; Burkitt's Lymphoma; Chronic Lymphocytic Leukaemia
Guest Editor
Dr. Niamh M O’Boyle

School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2 D02 R590, Ireland
Website | E-Mail
Interests: anticancer drug design; tubulin targeting agents; novel antiestrogens; cancer immunotherapy; triple negative breast cancer; Chronic Lymphocytic Leukaemia; colorectal cancer; pancreatic cancer; designed multiple ligands

Special Issue Information

Dear Colleagues,

The transition from cytotoxic chemotherapy to targeted cancer drug discovery and development has resulted in an increasing number of successful molecular therapies for cancer treatment. Continued research on the design of effective oncology drugs for application in chemotherapy has improved our understanding of the mechanism of the action of these drugs, expanded their activity/function spectrum and opened new potential applications for improved treatments. The availability of new effective oncology drugs is encouraging. The FDA approved eight drugs for orphan cancer indications in 2017 and 12 cancer drugs (26% of the total approvals), including two landmark approvals to the first CART cell therapies. The IDH2 inhibitor enasidenib is also noteworthy, demonstrating that drugs target cancer cells by blocking cancer-specific metabolic pathways. However, despite intense efforts only a few effective therapies have emerged, and oncology drug development remains challenging; combination therapy may the future for oncology patients. To achieve a more comprehensive understanding of these activities, the journal Pharmaceuticals now invites you to contribute review or original research articles covering the different facets of anticancer drug research, which will be published as a Special Issue on “Anticancer Drugs”. The focus of this Special Issue is on the design, synthesis and molecular mechanism of action of novel antitumor drugs and on the relationship between the chemical structure and the biochemical reactivity of the molecules. This issue will also provide an understanding of the biologic and genotypic context in which targets are selected for oncology drug discovery thus allowing rationalization of the activity of these drugs and guiding the design of more effective agents.

Areas of interest include, but are not limited to:

  • Anticancer drugs acting via “Reactive Oxygen Species”
  • Antitumor drugs targeting Tubulin and Microtubules
  • Prodrug based anticancer agents
  • PDEPT (Polymer directed Enzyme Prodrug Therapy)
  • Polymer - Protein conjugates
  • Alkylating agents
  • Nuclear Receptor Antagonists
  • Cancer immunotherapy
  • Antibody-Drug Conjugates
  • Inhibitors of Kinases relevant to cancer: Tyrosine Kinases, Serine-Threonine Kinases
  • Drugs acting on Apoptotic signaling pathways
  • HSP-90 inhibitors
  • PARP inhibitors
  • Conjugate and Hybrid drugs; dual acting anticancer drugs
  • Photodynamic therapy
  • Anti-angiogenic therapy
  • Drugs targeting mutant p53
  • Cancer precision medicine
  • Metabolism-modulating anti-cancer drugs
Prof. Dr. Mary J Meegan
Dr. Niamh M O’Boyle
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 850 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Anticancer drugs
  • Cancer drug design
  • Cancer immunotherapy
  • Conjugate and Hybrid drugs

Published Papers (7 papers)

View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle 3-Vinylazetidin-2-Ones: Synthesis, Antiproliferative and Tubulin Destabilizing Activity in MCF-7 and MDA-MB-231 Breast Cancer Cells
Pharmaceuticals 2019, 12(2), 56; https://doi.org/10.3390/ph12020056
Received: 1 March 2019 / Revised: 2 April 2019 / Accepted: 7 April 2019 / Published: 11 April 2019
PDF Full-text (2817 KB)
Abstract
Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-β-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast [...] Read more.
Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-β-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast cancer cells with an IC50 value of 8 nM for compound 7s 4-[3-Hydroxy-4-methoxyphenyl]-1-(3,4,5-trimethoxyphenyl)-3-vinylazetidin-2-one) which was comparable to the activity of Combretastatin A-4. Compound 7s had minimal cytotoxicity against both non-tumorigenic HEK-293T cells and murine mammary epithelial cells. The compounds inhibited the polymerisation of tubulin in vitro with an 8.7-fold reduction in tubulin polymerization at 10 M for compound 7s and were shown to interact at the colchicine-binding site on tubulin, resulting in significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that β-lactam 7s is targeting tubulin and resulted in mitotic catastrophe. A docking simulation indicated potential binding conformations for the 3-vinyl-β-lactam 7s in the colchicine domain of tubulin. These compounds are promising candidates for development as antiproiferative microtubule-disrupting agents. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Open AccessArticle Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis
Pharmaceuticals 2019, 12(2), 51; https://doi.org/10.3390/ph12020051
Received: 31 December 2018 / Revised: 27 February 2019 / Accepted: 15 March 2019 / Published: 3 April 2019
PDF Full-text (985 KB)
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the [...] Read more.
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Open AccessArticle Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells
Pharmaceuticals 2019, 12(1), 33; https://doi.org/10.3390/ph12010033
Received: 19 December 2018 / Revised: 14 February 2019 / Accepted: 15 February 2019 / Published: 20 February 2019
PDF Full-text (2257 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model [...] Read more.
Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Figures

Figure 1

Open AccessArticle Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency
Pharmaceuticals 2018, 11(2), 37; https://doi.org/10.3390/ph11020037
Received: 4 April 2018 / Revised: 23 April 2018 / Accepted: 25 April 2018 / Published: 29 April 2018
Cited by 1 | PDF Full-text (5747 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel [...] Read more.
The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview Can the Efficacy of [18F]FDG-PET/CT in Clinical Oncology Be Enhanced by Screening Biomolecular Profiles?
Pharmaceuticals 2019, 12(1), 16; https://doi.org/10.3390/ph12010016
Received: 18 December 2018 / Revised: 3 January 2019 / Accepted: 14 January 2019 / Published: 23 January 2019
PDF Full-text (596 KB) | HTML Full-text | XML Full-text
Abstract
Positron Emission Tomography (PET) is a functional imaging modality widely used in clinical oncology. Over the years the sensitivity and specificity of PET has improved with the advent of specific radiotracers, increased technical accuracy of PET scanners and incremental experience of Radiologists. However, [...] Read more.
Positron Emission Tomography (PET) is a functional imaging modality widely used in clinical oncology. Over the years the sensitivity and specificity of PET has improved with the advent of specific radiotracers, increased technical accuracy of PET scanners and incremental experience of Radiologists. However, significant limitations exist—most notably false positives and false negatives. Additionally, the accuracy of PET varies between cancer types and in some cancers, is no longer considered a standard imaging modality. This review considers the relative influence of macroscopic tumour features such as size and morphology on 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG) uptake by tumours which, though well described in the literature, lacks a comprehensive assessment of biomolecular features which may influence [18F]FDG uptake. The review aims to discuss the potential influence of individual molecular markers of glucose transport, glycolysis, hypoxia and angiogenesis in addition to the relationships between these key cellular processes and their influence on [18F]FDG uptake. Finally, the potential role for biomolecular profiling of individual tumours to predict positivity on PET imaging is discussed to enhance accuracy and clinical utility. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Figures

Graphical abstract

Open AccessReview Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature
Pharmaceuticals 2018, 11(4), 101; https://doi.org/10.3390/ph11040101
Received: 4 September 2018 / Revised: 5 October 2018 / Accepted: 9 October 2018 / Published: 11 October 2018
PDF Full-text (466 KB) | HTML Full-text | XML Full-text
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE2) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 [...] Read more.
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE2) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Figures

Figure 1

Open AccessReview Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications
Pharmaceuticals 2018, 11(2), 32; https://doi.org/10.3390/ph11020032
Received: 15 February 2018 / Revised: 2 April 2018 / Accepted: 3 April 2018 / Published: 9 April 2018
Cited by 9 | PDF Full-text (10994 KB) | HTML Full-text | XML Full-text
Abstract
Chemotherapy is one of the major therapeutic options for cancer treatment. Chemotherapy is often associated with a low therapeutic window due to its poor specificity towards tumor cells/tissues. Antibody-drug conjugate (ADC) technology may provide a potentially new therapeutic solution for cancer treatment. ADC [...] Read more.
Chemotherapy is one of the major therapeutic options for cancer treatment. Chemotherapy is often associated with a low therapeutic window due to its poor specificity towards tumor cells/tissues. Antibody-drug conjugate (ADC) technology may provide a potentially new therapeutic solution for cancer treatment. ADC technology uses an antibody-mediated delivery of cytotoxic drugs to the tumors in a targeted manner, while sparing normal cells. Such a targeted approach can improve the tumor-to-normal tissue selectivity and specificity in chemotherapy. Considering its importance in cancer treatment, we aim to review recent efforts for the design and development of ADCs. ADCs are mainly composed of an antibody, a cytotoxic payload, and a linker, which can offer selectivity against tumors, anti-cancer activity, and stability in systemic circulation. Therefore, we have reviewed recent updates and principal considerations behind ADC designs, which are not only based on the identification of target antigen, cytotoxic drug, and linker, but also on the drug-linker chemistry and conjugation site at the antibody. Our review focuses on site-specific conjugation methods for producing homogenous ADCs with constant drug-antibody ratio (DAR) in order to tackle several drawbacks that exists in conventional conjugation methods. Full article
(This article belongs to the Special Issue Anticancer Drugs)
Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Protein-protein interaction inhibitors (iPPI) as anti-cancer drugs
Article Type: Review
Authors: Joachim Jose, et al.
Affiliation: PharmaCampus Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 48, 48149, Muenster, Germany

Pharmaceuticals EISSN 1424-8247 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top