Natural Pharmacons: Biologically Active Plant-Based Pharmaceuticals 2024

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: closed (15 March 2024) | Viewed by 2133

Special Issue Editors


E-Mail Website
Guest Editor
Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
Interests: microfungi; macrofungi; antibacterial activity; antifungal activity; natural products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Medicinal plants present a valuable source of chemicals with potential therapeutic properties. They are widely used in traditional medicine as supportive therapeutics for various conditions and diseases. In recent years, there have been extensive studies in the area of medicinal plant research dealing with their various pharmacological effects. Novel research on this subject is necessary, since this is an emerging and a rather interesting domain. Many in vitro studies describe the beneficial effects of plants for human health, highlighting promising pharmacological effects.

This Special Issue will cover the biological activity of medicinal plants and isolated compounds. Screening natural preparations for their biological activities is of prime importance, since natural raw material presents an excellent source of pharmaceuticals with a wide variety of different biologically active chemical structures. If your manuscript addresses plant mixtures, please do check the following:

https://www.mdpi.com/journal/pharmaceuticals/instructions#mixtures

The scope of this Special Issue includes, but is not limited to, the following:

  • Chemical characterization of natural preparations;
  • Therapeutic potential of natural matrices in cardiovascular diseases, diabetes, cancer, and neurodegenerative diseases;
  • Antimicrobial activity;
  • Antioxidant activity;
  • Anti-enzymatic activity;
  • Anti-inflammatory activity;
  • Mechanism of pharmacological actions;
  • Structure–activity studies.

Dr. Dejan Stojković
Dr. Marina Soković
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1774 KiB  
Article
Eugenol Inhibits Neutrophils Myeloperoxidase In Vitro and Attenuates LPS-Induced Lung Inflammation in Mice
by Amina Chniguir, Mohamed Hedi Saguem, Pham My-Chan Dang, Jamel El-Benna and Rafik Bachoual
Pharmaceuticals 2024, 17(4), 504; https://doi.org/10.3390/ph17040504 - 15 Apr 2024
Viewed by 466
Abstract
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory [...] Read more.
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases. Full article
Show Figures

Figure 1

14 pages, 3526 KiB  
Article
Comparative Antioxidant Potentials and Quantitative Phenolic Compounds Profiles among the Flowers and Leaves from Various Chrysanthemum morifolium Cultivars
by Tham Thi Mong Doan, Gia Han Tran, Toan Khac Nguyen, Ki Sung Kang, Jin Hee Lim and Sanghyun Lee
Pharmaceuticals 2024, 17(3), 340; https://doi.org/10.3390/ph17030340 - 06 Mar 2024
Viewed by 633
Abstract
Chrysanthemum morifolium is a valuable plant that contains a wide range of phytochemical compounds and exhibits various biological activities. Ethanol extracts from both the leaves and flowers of 17 different cultivars of C. morifolium were tested for antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl and [...] Read more.
Chrysanthemum morifolium is a valuable plant that contains a wide range of phytochemical compounds and exhibits various biological activities. Ethanol extracts from both the leaves and flowers of 17 different cultivars of C. morifolium were tested for antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) assays and were quantitatively analyzed for 12 phenolic compounds using high-performance liquid chromatography with diode-array detection. We found that the ‘Ford’ and ‘Raina’ cultivars demonstrated strong antioxidant abilities and high phenolic compound contents compared to other cultivars, while the flowers of ‘Cielo’ and the leaves of ‘White Cap’ exhibited low antioxidant capacity in both assays. The ‘Cielo’ cultivar also displayed the lowest compound contents. Additionally, in most samples, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid stood out as high-content compounds in the extracts. This study provides foundational knowledge that can be used for selecting appropriate C. morifolium cultivars for further research. Moreover, the ‘Ford’ and ‘Raina’ cultivars, containing high amounts of bioactive compounds and showing superior antioxidant ability, could be applied to produce health-beneficial products. Full article
Show Figures

Figure 1

13 pages, 2472 KiB  
Article
Profiling the Phytochemicals of Orostachys margaritifolia: Biological Activities, LC-ESI/MS, and HPLC Analyses
by Nari Yoon, Hyeonjun Yu, Gia Han Tran, Chung Ho Ko, Hoon Kim, Mi Jeong Yoon and Sanghyun Lee
Pharmaceuticals 2024, 17(3), 290; https://doi.org/10.3390/ph17030290 - 23 Feb 2024
Viewed by 676
Abstract
Orostachys margaritifolia Y. N. Lee (OMY) is an endemic Korean plant in the family Crassulaceae that is known to contain a variety of bioactive compounds. To assess the physiological activities of an OMY ethanol extract, ABTS+ and DPPH radical scavenging assays and [...] Read more.
Orostachys margaritifolia Y. N. Lee (OMY) is an endemic Korean plant in the family Crassulaceae that is known to contain a variety of bioactive compounds. To assess the physiological activities of an OMY ethanol extract, ABTS+ and DPPH radical scavenging assays and a nitric oxide (NO) inhibition assay were conducted. The phytochemical makeup of the extract was profiled via liquid chromatography-mass spectrometry (LC-ESI/MS) and high-performance liquid chromatography with a photodiode array detector (HPLC/PDA). The OMY extract was found to have weaker ABTS+ and DPPH radical scavenging activities than the control group (green tea). In the NO inhibition assay, the OMY extract induced a significant increase in macrophage cell viability but showed a lower NO inhibitory activity than l-NAME, producing an IC50 value of 202.6 μg/mL. The LC-ESI/MS and HPLC/PDA analyses identified isoquercitrin and astragalin in the OMY extract, quantifying their contents at 3.74 mg/g and 3.19 mg/g, respectively. The study revealed possibilities for the utilization of OMY as a future source of drugs for alleviating inflammation and diseases related to reactive oxygen species. Full article
Show Figures

Figure 1

Back to TopTop