Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity
Abstract
:1. Introduction
2. Results
2.1. Chemical Profile of the Three EOs
Compound * | Composition (%) | Linear Retention Index (RI) [34] | Identification | |||
---|---|---|---|---|---|---|
LDEO | ROEO | MCEO | RICalc ** | RILit *** | ||
Propanoic acid, 2-methyl-, propyl ester | - | - | 0.76 | 895 | - | RI, MS |
α-Pinene | 1.30 | 6.10 | 4.41 | 939 | 935 | RI, MS |
Camphene | - | 11.03 | - | 951 | 950 | RI, MS |
β-Pinene | 6.34 | - | 1.50 | 980 | 981 | RI, MS |
β-Myrcene | - | 1.83 | - | 993 | 991 | RI, MS |
(+)-4-Carene | - | 0.89 | - | 1011 | 1010 | RI, MS |
β-Cymene | - | 4.14 | 2.03 | 1017 | 1029 | RI, MS |
D-Limonene | - | 8.00 | - | 1019 | 1030 | RI, MS |
Cineole | 37.27 | 4.97 | 43.32 | 1029 | 1036 | RI, MS |
γ-Terpinene | - | 2.18 | - | 1040 | 1039 | RI, MS |
Linalool oxide | 1.35 | - | - | 1054 | 1070 | RI, MS |
Ocimene | - | 1.62 | - | 1068 | 1048 | RI, MS |
6-Methyl-2-(2-oxiranyl)-5-hepten-2-ol | 2.00 | - | - | 1072 | - | RI, MS |
β-Linalool | 2.41 | - | - | 1091 | 1092 | RI, MS |
p-Linalool | - | 6.86 | 11.15 | 1098 | 1105 | RI, MS |
Pinocarveol | 12.67 | - | - | 1125 | 1136 | RI, MS |
β-Pinone | 2.80 | - | - | 1134 | - | RI, MS |
Camphor | 6.73 | 15.00 | - | 1145 | 1151 | RI, MS |
Borneol | - | 4.02 | - | 1185 | 1179 | RI, MS |
Pinocarvone | 4.09 | 1.20 | - | 1186 | 1162 | RI, MS |
p-menth-1-en-8-ol | 3.34 | - | - | 1192 | 1201 | RI, MS |
Terpinen-4-ol | - | 3.74 | - | 1195 | 1193 | RI, MS |
α-Terpineol | - | 3.04 | 4.83 | 1229 | 1201 | RI, MS |
α-Thujenal | - | - | 1.24 | 1243 | 1246 | RI, MS |
Myrtenal | 4.96 | - | - | 1262 | 1260 | RI, MS |
Pulegone | 3.66 | - | 1.32 | 1279 | - | RI, MS |
cis-Myrtanyl acetate | - | - | 1.94 | 1286 | - | RI, MS |
Bicyclo [3.1.1]hept-2-ene-2-methanol, 6,6-dimethyl | 6.89 | - | - | 1288 | - | RI, MS |
L-(-)-Carvone | 1.76 | - | - | 1291 | 1287 | RI, MS |
Verbenone | - | 16.90 | - | 1293 | 1290 | RI, MS |
Borneol, acetate | - | 2.37 | - | 1302 | 1299 | RI, MS |
α-Terpineol acetate | - | - | 21.25 | 1352 | 1350 | RI, MS |
trans-Verbenol | - | 2.40 | - | 1356 | 1359 | RI, MS |
Terpinyl acetate | - | - | 1.26 | 1367 | 1360 | RI, MS |
Geranyl acetate | - | - | 2.73 | 1379 | 1382 | RI, MS |
Eugenol methyl ether | - | - | 2.26 | 1395 | 1407 | RI, MS |
Caryophyllene oxide | 0.78 | - | - | 1625 | 1594 | RI, MS |
β-Selinenol | 1.65 | - | - | 1680 | - | RI, MS |
MH | 7.64 | 37.97 | 7.94 | |||
OM | 77.38 | 60.5 | 81.79 | |||
SH | 2.43 | - | - | |||
OS | - | - | - | |||
Others | 12.55 | - | 10.27 | |||
Total | 100 | 98.47 | 100 |
2.2. Antioxidant Activity of Individual EOs
2.3. Simplex Centroid Design
2.4. Statistical Validation of Postulated Model
2.5. Components Effects and Adjusted Models
2.6. Desirability and Optimization of the Formulation
2.7. Mixture Profile
2.7.1. Optimization of DPPHIC50
2.7.2. Optimization of ABTSIC50
2.8. Simultaneous Optimization of All Responses
2.9. Experimental Verification of the Assumed Model
3. Materials and Methods
3.1. Plant Material and Extraction of EOs
3.2. Chemicals
3.3. GC-MS Analysis of EOs
3.4. Antioxidant Assays
3.4.1. DPPH Radical Scavenging Assay
3.4.2. ABTS Radical Scavenging Activity
3.5. Experimental Design
3.5.1. Mixture Design
3.5.2. Experimental Matrix and Mathematical Model
3.6. Statistical Analysis and Optimisation Tools
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villamena, F.A. Chemistry of Reactive Species. In Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–48. [Google Scholar]
- Sadiq, I.Z. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr. Mol. Med. 2023, 23, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Almasry, M.; Dhillon, A.S.; Abuayyash, M.M.; Kothandaraman, N.; Cakar, Z. Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In Oxidative Stress in Human Reproduction: Shedding Light on a Complicated Phenomenon; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–16. [Google Scholar]
- Elbouzidi, A.; Taibi, M.; Laaraj, S.; Loukili, E.H.; Haddou, M.; El Hachlafi, N.; Naceiri Mrabti, H.; Baraich, A.; Bellaouchi, R.; Asehraou, A.; et al. Chemical Profiling of Volatile Compounds of the Essential Oil of Grey-Leaved Rockrose (Cistus albidus L.) and Its Antioxidant, Anti-Inflammatory, Antibacterial, Antifungal, and Anticancer Activity in Vitro and in Silico. Front. Chem. 2024, 12, 1334028. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Fikri-Benbrahim, K.; Al-Mijalli, S.H.; Elbouzidi, A.; Jeddi, M.; Abdallah, E.M.; Assaggaf, H.; Bouyahya, A.; Alnasser, S.M.A.; Attar, A. Tetraclinis articulata (Vahl) Mast. Essential Oil as a Promising Source of Bioactive Compounds with Antimicrobial, Antioxidant, Anti-Inflammatory and Dermatoprotective Properties: In Vitro and in Silico Evidence. Heliyon 2023, 10, e23084. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Taibi, M.; Baraich, A.; Haddou, M.; Loukili, E.H.; Asehraou, A.; Mesnard, F.; Addi, M. Enhancing Secondary Metabolite Production in Pelargonium graveolens Hort. Cell Cultures: Eliciting Effects of Chitosan and Jasmonic Acid on Bioactive Compound Production. Horticulturae 2024, 10, 521. [Google Scholar] [CrossRef]
- Cheeseman, K.H.; Slater, T.F. An Introduction to Free Radical Biochemistry. Br. Med. Bull. 1993, 49, 481–493. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.; Gianotti, A.; Patrignani, F.; Belletti, N.; Guerzoni, M.E.; Gardini, F. Use of Natural Aroma Compounds to Improve Shelf-Life and Safety of Minimally Processed Fruits. Trends Food Sci. Technol. 2004, 15, 201–208. [Google Scholar] [CrossRef]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of Essential Oils: A Review on Their Interaction with Food Components. Front. Microbiol. 2015, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Teibo, J.O.; Wasef, L.; Shaheen, H.M.; Akomolafe, A.P.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; Papadakis, M. A Review of the Bioactive Components and Pharmacological Properties of Lavandula Species. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 877–900. [Google Scholar] [CrossRef]
- Woronuk, G.; Demissie, Z.; Rheault, M.; Mahmoud, S. Biosynthesis and Therapeutic Properties of Lavandula Essential Oil Constituents. Planta Med. 2011, 77, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Chamkhi, I.; El Menyiy, N.; El Moudden, H.; Harhar, H.; El Idrissi, Z.L.; Khouchlaa, A.; Jouadi, I.; El Baaboua, A.; Taha, D. Traditional Use, Phytochemistry, Toxicology, and Pharmacological Properties of Lavandula dentata L.: A Comprehensive Review. S. Afr. J. Bot. 2023, 154, 67–87. [Google Scholar] [CrossRef]
- El Abdali, Y.; Agour, A.; Allali, A.; Bourhia, M.; El Moussaoui, A.; Eloutassi, N.; Salamatullah, A.M.; Alzahrani, A.; Ouahmane, L.; Aboul-Soud, M.A.M. Lavandula dentata L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. Plants 2022, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Alegre, L. Subcellular Compartmentation of the Diterpene Carnosic Acid and Its Derivatives in the Leaves of Rosemary. Plant Physiol. 2001, 125, 1094–1102. [Google Scholar] [CrossRef]
- Al-Sereiti, M.R.; Abu-Amer, K.M.; Sena, P. Pharmacology of Rosemary (Rosmarinus officinalis Linn.) and Its Therapeutic Potentials; NISCAIR-CSIR: New Delhi, India, 1999. [Google Scholar]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and Antimicrobial Activities of Rosemary Extracts Linked to Their Polyphenol Composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef]
- Mulas, M.; Melis, R.A.M. Essential Oil Composition of Myrtle (Myrtus communis) Leaves. J. Herbs Spices Med. Plants 2011, 17, 21–34. [Google Scholar] [CrossRef]
- Charles, D.J.; Charles, D.J. Myrtle. In Antioxidant Properties of Spices, Herbs and Other Sources; Springer Science & Business Media B.V.: New York, NY, USA, 2013; pp. 409–414. [Google Scholar]
- Giampieri, F.; Cianciosi, D.; Forbes-Hernández, T.Y. Myrtle (Myrtus communis L.) Berries, Seeds, Leaves, and Essential Oils: New Undiscovered Sources of Natural Compounds with Promising Health Benefits. Food Front. 2020, 1, 276–295. [Google Scholar] [CrossRef]
- Touati, B.; Chograni, H.; Hassen, I.; Boussaïd, M.; Toumi, L.; Brahim, N. Ben Chemical Composition of the Leaf and Flower Essential Oils of Tunisian Lavandula dentata L. (Lamiaceae). Chem. Biodivers. 2011, 8, 1560–1569. [Google Scholar] [CrossRef]
- Bousmaha, L.; Bekkara, F.A.; Tomi, F.; Casanova, J. Advances in the Chemical Composition of Lavandula dentata L. Essential Oil from Algeria. J. Essent. Oil Res. 2005, 17, 292–295. [Google Scholar] [CrossRef]
- Msaada, K.; Salem, N.; Tammar, S.; Hammami, M.; Jamal Saharkhiz, M.; Debiche, N.; Limam, F.; Marzouk, B. Essential Oil Composition of Lavandula dentata, L. Stoechas and L. Multifida Cultivated in Tunisia. J. Essent. Oil Bear. Plants 2012, 15, 1030–1039. [Google Scholar] [CrossRef]
- Anwar, S.; Crouch, R.A.; Awadh Ali, N.A.; Al-Fatimi, M.A.; Setzer, W.N.; Wessjohann, L. Hierarchical Cluster Analysis and Chemical Characterisation of Myrtus communis L. Essential Oil from Yemen Region and Its Antimicrobial, Antioxidant and Anti-Colorectal Adenocarcinoma Properties. Nat. Prod. Res. 2017, 31, 2158–2163. [Google Scholar] [CrossRef]
- Mhamdi, B.; Marzouk, B. Essential Oil Composition of Two Myrtus communis L. Varieties Grown in North Tunisia. Ital. J. Biochem. 2007, 56, 180–186. [Google Scholar]
- Brada, M.; Tabti, N.; Boutoumi, H.; Wathelet, J.-P.; Lognay, G. Composition of the Essential Oil of Leaves and Berries of Algerian Myrtle (Myrtus communis L.). J. Essent. Oil Res. 2012, 24, 1–3. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Haddou, M.; Belbachir, Y.; Baraich, A.; Khalil, Z.; Bellaouchi, R.; Asehraou, A.; Addi, M.; AL-Farga, A.; et al. Phytochemical Characterization and Multifaceted Bioactivity Assessment of Essential Oil from Clinopodium Nepeta Subsp. Ascendens: Potential for the Food and Pharmaceutical Sectors. CyTA—J. Food 2024, 22, 2348735. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Haddou, M.; Baraich, A.; Loukili, E.H.; Moubchir, T.; Allali, A.; Khoulati, A.; Bellaouchi, R.; Asehraou, A.; et al. Phytochemical Characterization and Multifaceted Bioactivity Assessment of Essential Oil from Ptychotis Verticillata Duby: Anti-Diabetic, Anti-Tyrosinase, and Anti-Inflammatory Activity. Heliyon 2024, 10, e29459. [Google Scholar] [CrossRef] [PubMed]
- Assaggaf, H.; El Hachlafi, N.; Elbouzidi, A.; Taibi, M.; Benkhaira, N.; El Kamari, F.; Alnasseri, S.M.; Laaboudi, W.; Bouyahya, A.; Ardianto, C. Unlocking the Combined Action of Mentha pulegium L. Essential Oil and Thym Honey: In Vitro Pharmacological Activities, Molecular Docking, and In Vivo Anti-Inflammatory Effect. Heliyon 2024, 10, e31922. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and Pitfalls in Measuring Antioxidant Efficacy: A Critical Evaluation of ABTS, DPPH, and ORAC Assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of Total Antioxidant Capacity: Comparison of Four Methods as Applied to Human Blood Plasma. Scand. J. Clin. Lab. Invest. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On Practical Problems in Estimation of Antioxidant Activity of Compounds by DPPH Method (Problems in Estimation of Antioxidant Activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Moghadam, A.R.L. Antioxidant Activity and Chemical Composition of Rosmarinus officinalis L. Essent. Oil Iran J. Essential Oil Bearing Plants 2015, 18, 1490–1494. [Google Scholar] [CrossRef]
- Beretta, G.; Artali, R.; Facino, R.M.; Gelmini, F. An Analytical and Theoretical Approach for the Profiling of the Antioxidant Activity of Essential Oils: The Case of Rosmarinus officinalis L. J. Pharm. Biomed. Anal. 2011, 55, 1255–1264. [Google Scholar] [CrossRef]
- Pistelli, L.; Giovanelli, S.; D’Angiolillo, F.; Karkleva, K.; Leonardi, M.; Ambryszewska, K.; Cervelli, C.; Pistelli, L. Antioxidant Activity of Several Essential Oils from Different Rosmarinus officinalis Cultivars Grown in Sanremo (Italy). Nat. Prod. Commun. 2018, 13, 1934578X1801300917. [Google Scholar] [CrossRef]
- Tijjani, H.; Ibrahim, U.; Tijani, S.; Alka, S.; Olatunde, A.; Kura, A.U.; Gagman, H.A.; Saliu, O.A.; Idowu, O.A.; Ebhodaghe, F.E. Verbenone and L-Arginine from Daucus Carota Seeds Attenuate Oxidative Stress in Streptozotocin-Nicotinamide (STZ-NAD)-Induced Diabetic Mice: Evidence from In Vitro and In Vivo Studies. bioRxiv 2023. preprint. [Google Scholar]
- Snoussi, A.; Chaabouni, M.M.; Bouzouita, N.; Kachouri, F. Chemical Composition and Antioxidant Activity of Myrtus communis L. Floral Buds Essential Oil. J. Essent. Oil Res. 2011, 23, 10–14. [Google Scholar] [CrossRef]
- Gardeli, C.; Vassiliki, P.; Athanasios, M.; Kibouris, T.; Komaitis, M. Essential Oil Composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of Antioxidant Capacity of Methanolic Extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. Plants 2020, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Jabir, M.S.; Taha, A.A.; Sahib, U.I. Antioxidant Activity of Linalool. Eng. Technol. J. 2018, 36, 64–67. [Google Scholar] [CrossRef]
- Dammak, I.; Hamdi, Z.; El Euch, S.K.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S. Evaluation of Antifungal and Anti-Ochratoxigenic Activities of Salvia officinalis, Lavandula dentata and Laurus nobilis Essential Oils and a Major Monoterpene Constituent 1, 8-Cineole against Aspergillus carbonarius. Ind. Crops Prod. 2019, 128, 85–93. [Google Scholar] [CrossRef]
- Hendel, N.; Sarri, M.; Sarri, D.; Seghiour, S.; Napoli, E.; Selloum, M.; Ruberto, G. Phytochemical Analysis, Antibacterial and Antifungal Effect of Lavandula dentata L. Essential Oil and Methanol Extract. Nat. Prod. Res. 2023, 128, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Shahin, S.M.; Jaleel, A.; Alyafei, M.A.M. Yield and In Vitro Antioxidant Potential of Essential Oil from Aerva javanica (Burm. F.) Juss. Ex Schul. Flower with Special Emphasis on Seasonal Changes. Plants 2021, 10, 2618. [Google Scholar] [CrossRef] [PubMed]
- Diniz do Nascimento, L.; Barbosa de Moraes, A.A.; Santana da Costa, K.; Pereira Galúcio, J.M.; Taube, P.S.; Leal Costa, C.M.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Guerreiro de Faria, L.J. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Assaggaf, H.; Jeddi, M.; Mrabti, H.N.; Ez-Zoubi, A.; Qasem, A.; Attar, A.; Goh, B.H.; Tan, S.L.; Bouyahya, A.; Goh, K.W. Design of Three-Component Essential Oil Extract Mixture from Cymbopogon flexuosus, Carum carvi, and Acorus calamus with Enhanced Antioxidant Activity. Sci. Rep. 2024, 14, 9195. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.D.; Farmaha, M.; Kaur, I.; Singh, N. Phytochemical Analysis Using GC-FID, FPLC Fingerprinting, Antioxidant, Antimicrobial, Anti-Inflammatory Activities Analysis of Traditionally Used Eucalyptus Globulus Essential Oil. Drug Anal. Res. 2021, 5, 26–38. [Google Scholar] [CrossRef]
- Baj, T.; Kowalska, G.; Kowalski, R.; Szymańska, J.; Kai, G.; Coutinho, H.D.M.; Sieniawska, E. Synergistic Antioxidant Activity of Four—Component Mixture of Essential Oils: Basil, Cedarwood, Citronella and Thyme for the Use as Medicinal and Food Ingredient. Antioxidants 2023, 12, 577. [Google Scholar] [CrossRef]
- Nouioura, G.; Tourabi, M.; El Ghouizi, A.; Kara, M.; Assouguem, A.; Saleh, A.; Al Kamaly, O.; El Ouadrhiri, F.; Lyoussi, B.; Derwich, E.H. Optimization of a New Antioxidant Formulation Using a Simplex Lattice Mixture Design of Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. Grown in Northern Morocco. Plants 2023, 12, 1175. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Djebali, K.; Abid, S.; Saada, M.; Ksouri, R. Application of the Mixture Design for Optimum Antimicrobial Activity: Combined Treatment of Syzygium aromaticum, Cinnamomum zeylanicum, Myrtus communis, and Lavandula stoechas Essential Oils against Escherichia coli. J. Food Process Preserv. 2019, 43, e14257. [Google Scholar] [CrossRef]
- Taibi, M.; Loukili, E.H.; Elbouzidi, A.; Baraich, A.; Haddou, M.; Bellaouchi, R.; Saalaoui, E.; Asehraou, A.; Addi, M.; Bourhia, M. Exploring the Pharmacological Potential of the Chemically Characterized Essential Oil from Clinopodium nepeta Subsp. Ascendens: A Combined In Vitro and In Silico Analysis. Moroc. J. Chem. 2024, 12, 997–1021. [Google Scholar]
- El Hassania, L.; Mounime, K.; Elbouzidi, A.; Taibi, M.; Mohamed, C.; Abdelkhaleq, L.; Mohamed, R.; Mrabti, H.N.; Zengin, G.; Addi, M. Analyzing the Bioactive Properties and Volatile Profiles Characteristics of Opuntia dillenii: Exploring Its Potential for Pharmacological Applications. Chem. Biodivers. 2024, 21, e202301890. [Google Scholar] [CrossRef]
- El Guerrouj, B.; Taibi, M.; Elbouzidi, A.; Bouhassoun, S.; Loukili, E.H.; Haddou, M.; Hammouti, Y.; Khoulati, A.; Addi, M.; Chaabane, K.; et al. The Effect of Altitude on the Chemical Composition, Antioxidant and Tropical Journal of Natural Product Research Activities of Eucalyptus globulus Labill. Essential Oils. Trop. J. Nat. Prod. Res. 2023, 7, 5279–5285. [Google Scholar] [CrossRef]
- Yan, T.; Chen, Y.; Shang, L.; Li, G. Assessment of Essential Oils from Five Santalum Species Using ATR-Fourier Transform Mid-Infrared Spectroscopy and GC-MS Combined with Chemometric Analysis. J. Essent. Oil Res. 2020, 32, 150–157. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured publishing corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Benkhaira, N.; Zouine, N.; Fadil, M.; Ibnsouda Koraichi, S.; El Hachlafi, N.; Jeddi, M.; Lachkar, M.; Fikri-Benbrahim, K. Application of Mixture Design for the Optimum Antibacterial Action of Chemically-Analyzed Essential Oils and Investigation of the Antiadhesion Ability of Their Optimal Mixtures on 3D Printing Material. Bioprinting 2023, 34, e00299. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Zouine, N.; Fadil, M.; Jeddi, M.; Jeddi, S.; Flouchi, R.; Koraichi, S.I.; Fikri-Benbrahim, K. Exploration of Novel Antibacterial and Anti-Adhesive Formulations from Three Chemically Characterized Essential Oils: Optimization Using Experimental Design Methodology. Sci. Afr. 2023, 22, e01927. [Google Scholar] [CrossRef]
No. a | L. dentata | R. officinalis | M. communis | Observed Responses b (µg/mL) | |
---|---|---|---|---|---|
DPPHIC50 | ABTSIC50 | ||||
1 | 1 | 0 | 0 | 541.19 ± 3.72 | 663.42 ± 2.99 |
2 | 0 | 1 | 0 | 194.10 ± 3.01 | 134.07 ± 1.70 |
3 | 0 | 0 | 1 | 455.32 ± 1.21 | 298.20 ± 4.36 |
4 | 0.5 | 0.5 | 0 | 299.57 ± 2.17 | 321.30 ± 1.81 |
5 | 0.5 | 0 | 0.5 | 514.22 ± 7.09 | 523.96 ± 7.44 |
6 | 0 | 0.5 | 0.5 | 161.21 ± 1.18 | 122.64 ± 3.01 |
7 | 0.33 | 0.33 | 0.33 | 135.34 ± 4.07 | 109.21 ± 2.19 |
8 | 0.33 | 0.33 | 0.33 | 144.62 ± 2.81 | 123.88 ± 0.95 |
9 | 0.33 | 0.33 | 0.33 | 113.25 ± 1.97 | 145.51 ± 2.66 |
10 | 0.67 | 0.17 | 0.17 | 235.76 ± 3.52 | 215.42 ± 2.33 |
11 | 0.17 | 0.67 | 0.17 | 88.67 ± 0.83 | 59.33 ± 1.04 |
12 | 0.17 | 0.17 | 0.67 | 201.06 ± 0.37 | 161.22 ± 0.39 |
BHT * | - | - | - | 123.43 ± 6.44 | 168.22 ± 10.23 |
AA ** | - | - | - | 147.81 ± 5.33 | 140.22 ± 8.99 |
DPPHIC50 | Model | DF | SS | MS | F | p-Value |
R | 6 | 268,557.56 | 44,759.6 | 17.6865 | 0.0032 * | |
r | 5 | 12,653.57 | 2530.7 | |||
Total | 11 | 281,211.13 | ||||
R² | 0.96 | |||||
R²Adjusted | 0.90 | |||||
ABTSIC50 | Model | DF | SS | MS | F | p-value |
R | 6 | 345,693.50 | 57,615.6 | 10.2207 | 0.0110 * | |
r | 5 | 28,185.81 | 5637.2 | |||
Total | 11 | 373,879.31 | ||||
R² | 0.93 | |||||
R²Adjusted | 0.84 |
Term | Coefficients | DPPHIC50 | ABTSIC50 | ||
---|---|---|---|---|---|
Estimation | p-Value | Estimation | p-Value | ||
L. dentata (Mixture) | β1 | 521.924 | 0.0001 * | 626.904 | 0.0003 * |
R. officinalis (Mixture) | β2 | 198.364 | 0.0095 * | 139.591 | 0.1122 |
M. communis (Mixture) | β3 | 446.975 | 0.0003 * | 298.164 | 0.0092 * |
L. dentata * R. officinalis | β12 | −302.302 | 0.2715 | −371.768 | 0.3553 |
L. dentata * M. communis | β13 | 8.639 | 0.9732 | 99.498 | 0.7961 |
R. officinalis * M. communis | β23 | −662.160 | 0.0425 * | −363.007 | 0.3658 |
L. dentata * R. officinalis * M. communis | β123 | −4729.370 | 0.0163 * | −5106.523 | 0.0500 * |
Mixture of Combination | Mixture (%) | DPPHIC50 (µg/mL) | ABTSIC50 (µg/mL) | ||
---|---|---|---|---|---|
Exp. a | Predi. b | Exp. | Predi. | ||
L. dentata | 19% | 71.23 ± 0.98 | 66.78 ± 00.00 | 44.39 ± 1.07 | 45.22 ± 00.00 |
R. officinalis | 50% | ||||
M. communis | 31% |
Components | Coded Variables | Level− | Level+ |
---|---|---|---|
L. dentata | H1 | 0 | 1 |
R. officinalis | H2 | 0 | 1 |
M. communis | H3 | 0 | 1 |
Sum of proportions | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbouzidi, A.; Taibi, M.; El Hachlafi, N.; Haddou, M.; Jeddi, M.; Baraich, A.; Aouraghe, A.; Bellaouchi, R.; Mothana, R.A.; Hawwal, M.F.; et al. Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals 2024, 17, 1071. https://doi.org/10.3390/ph17081071
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Aouraghe A, Bellaouchi R, Mothana RA, Hawwal MF, et al. Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals. 2024; 17(8):1071. https://doi.org/10.3390/ph17081071
Chicago/Turabian StyleElbouzidi, Amine, Mohamed Taibi, Naoufal El Hachlafi, Mounir Haddou, Mohamed Jeddi, Abdellah Baraich, Aya Aouraghe, Reda Bellaouchi, Ramzi A. Mothana, Mohammed F. Hawwal, and et al. 2024. "Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity" Pharmaceuticals 17, no. 8: 1071. https://doi.org/10.3390/ph17081071
APA StyleElbouzidi, A., Taibi, M., El Hachlafi, N., Haddou, M., Jeddi, M., Baraich, A., Aouraghe, A., Bellaouchi, R., Mothana, R. A., Hawwal, M. F., Mesnard, F., Hano, C., Asehraou, A., Chaabane, K., El Guerrouj, B., & Addi, M. (2024). Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals, 17(8), 1071. https://doi.org/10.3390/ph17081071