Recent Advancements in the Development of Antiprotozoal Agents

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 7917

Special Issue Editors


E-Mail Website
Guest Editor
Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V, 44, 00165 Rome, Italy
Interests: drug discovery; medicinal chemistry; anticancer; antiprotozoal; antiviral; cystic fibrosis; photoaffinity labeling; chemotherapy; leishmania; trypanosome; trypanothione; CYP51
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
Interests: drug discovery; medicinal chemistry; nicotinic acetylcholine receptors; cystic fibrosis; GABA receptors; anti-malarial agents

Special Issue Information

Dear Colleagues,

Protozoa from different genera (e.g., Plasmodium, Leishmania, and Trypanosoma) cause infections that engender several prominent and grave diseases in humans. Owing to their widespread presence and major impact in developing countries, most of the infections are categorized as Neglected Tropical Diseases. However, the distribution of such diseases has dramatically changed in recent years, with many of them being reported in other parts of the world; thus, they have become a relevant global threat for human health.

On the other hand, chemotherapy has always relied on a very few and primarily old drugs, which have major limitations including low efficacy and relevant toxicity; their use so far has been justified by the lack of effective alternatives. Hence, increasing efforts have been devoted to find alternatives of the existing chemotherapy drugs in the last decade, leading to the identification of certain effective antiprotozoal agents. Additionally, recent advancements in the knowledge of parasites’ biology have allowed for the identification of previously unknown or poorly explored pathways of protozoa, thereby providing important insights to drive the development of innovative antiprotozoal agents.

This Special Issue aims to collate papers that underscore the latest findings in the search of antiprotozoal agents with various mechanisms of action and the discovery of novel biological targets, as well as elucidate the future research directions to analyze these neglected tropical diseases. We welcome submissions of both original research articles and reviews.

Dr. Francesco Saccoliti
Dr. Alessandro Giraudo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antiprotozoal
  • drug discovery
  • chemotherapy
  • parasite
  • protozoa
  • mechanism of action of antiprotozoal agents

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

22 pages, 2795 KiB  
Article
Pharmacokinetics, Dose-Proportionality, and Tolerability of Intravenous Tanespimycin (17-AAG) in Single and Multiple Doses in Dogs: A Potential Novel Treatment for Canine Visceral Leishmaniasis
by Marcos Ferrante, Bruna Martins Macedo Leite, Lívia Brito Coelho Fontes, Alice Santos Moreira, Élder Muller Nascimento de Almeida, Claudia Ida Brodskyn, Isadora dos Santos Lima, Washington Luís Conrado dos Santos, Luciano Vasconcellos Pacheco, Vagner Cardoso da Silva, Jeancarlo Pereira dos Anjos, Lílian Lefol Nani Guarieiro, Fabiana Landoni, Juliana P. B. de Menezes, Deborah Bittencourt Mothé Fraga, Aníbal de Freitas Santos Júnior and Patrícia Sampaio Tavares Veras
Pharmaceuticals 2024, 17(6), 767; https://doi.org/10.3390/ph17060767 - 11 Jun 2024
Viewed by 1973
Abstract
In the New World, dogs are considered the main reservoir of visceral leishmaniasis (VL). Due to inefficacies in existing treatments and the lack of an efficient vaccine, dog culling is one of the main strategies used to control disease, making the development of [...] Read more.
In the New World, dogs are considered the main reservoir of visceral leishmaniasis (VL). Due to inefficacies in existing treatments and the lack of an efficient vaccine, dog culling is one of the main strategies used to control disease, making the development of new therapeutic interventions mandatory. We previously showed that Tanespimycin (17-AAG), a Hsp90 inhibitor, demonstrated potential for use in leishmaniasis treatment. The present study aimed to test the safety of 17-AAG in dogs by evaluating plasma pharmacokinetics, dose-proportionality, and the tolerability of 17-AAG in response to a dose-escalation protocol and multiple administrations at a single dose in healthy dogs. Two protocols were used: Study A: four dogs received variable intravenous (IV) doses (50, 100, 150, 200, or 250 mg/m2) of 17-AAG or a placebo (n = 4/dose level), using a cross-over design with a 7-day “wash-out” period; Study B: nine dogs received three IV doses of 150 mg/m2 of 17-AAG administered at 48 h intervals. 17-AAG concentrations were determined by a validated high-performance liquid chromatographic (HPLC) method: linearity (R2 = 0.9964), intra-day precision with a coefficient of variation (CV) ≤ 8%, inter-day precision (CV ≤ 20%), and detection and quantification limits of 12.5 and 25 ng/mL, respectively. In Study A, 17-AAG was generally well tolerated. However, increased levels of liver enzymes–alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)–and bloody diarrhea were observed in all four dogs receiving the highest dosage of 250 mg/m2. After single doses of 17-AAG (50–250 mg/m2), maximum plasma concentrations (Cmax) ranged between 1405 ± 686 and 9439 ± 991 ng/mL, and the area under the curve (AUC) plotting plasma concentration against time ranged between 1483 ± 694 and 11,902 ± 1962 AUC 0–8 h μg/mL × h, respectively. Cmax and AUC parameters were dose-proportionate between the 50 and 200 mg/m2 doses. Regarding Study B, 17-AAG was found to be well tolerated at multiple doses of 150 mg/m2. Increased levels of liver enzymes–ALT (28.57 ± 4.29 to 173.33 ± 49.56 U/L), AST (27.85 ± 3.80 to 248.20 ± 85.80 U/L), and GGT (1.60 ± 0.06 to 12.70 ± 0.50 U/L)–and bloody diarrhea were observed in only 3/9 of these dogs. After the administration of multiple doses, Cmax and AUC 0–48 h were 5254 ± 2784 μg/mL and 6850 ± 469 μg/mL × h in plasma and 736 ± 294 μg/mL and 7382 ± 1357 μg/mL × h in tissue transudate, respectively. In conclusion, our results demonstrate the potential of 17-AAG in the treatment of CVL, using a regimen of three doses at 150 mg/m2, since it presents the maintenance of high concentrations in subcutaneous interstitial fluid, low toxicity, and reversible hepatotoxicity. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Figure 1

Review

Jump to: Research, Other

48 pages, 6035 KiB  
Review
Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy
by Alessandro Giraudo, Cristiano Bolchi, Marco Pallavicini, Roberto Di Santo, Roberta Costi and Francesco Saccoliti
Pharmaceuticals 2025, 18(1), 28; https://doi.org/10.3390/ph18010028 - 28 Dec 2024
Cited by 1 | Viewed by 2591
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The [...] Read more.
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite’s diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds’ function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

23 pages, 1610 KiB  
Project Report
Introducing the NUATEI Consortium: A Mexican Research Program for the Identification of Natural and Synthetic Antimicrobial Compounds for Prevalent Infectious Diseases
by Julio César Carrero, Bertha Espinoza, Leonor Huerta, Mayra Silva-Miranda, Silvia-Laura Guzmán-Gutierrez, Alejandro Dorazco-González, Ricardo Reyes-Chilpa, Clara Espitia and Sergio Sánchez
Pharmaceuticals 2024, 17(7), 957; https://doi.org/10.3390/ph17070957 - 18 Jul 2024
Cited by 1 | Viewed by 1990
Abstract
The need for new drugs to treat human infections is a global health concern. Diseases like tuberculosis, trypanosomiasis, amoebiasis, and AIDS remain significant problems, especially in developing countries like Mexico. Despite existing treatments, issues such as resistance and adverse effects drive the search [...] Read more.
The need for new drugs to treat human infections is a global health concern. Diseases like tuberculosis, trypanosomiasis, amoebiasis, and AIDS remain significant problems, especially in developing countries like Mexico. Despite existing treatments, issues such as resistance and adverse effects drive the search for new alternatives. Herein, we introduce the NUATEI research consortium, made up of experts from the Institute of Biomedical Research at UNAM, who identify and obtain natural and synthetic compounds and test their effects against human pathogens using in vitro and in vivo models. The consortium has evaluated hundreds of natural extracts and compounds against the pathogens causing tuberculosis, trypanosomiasis, amoebiasis, and AIDS, rendering promising results, including a patent with potential for preclinical studies. This paper presents the rationale behind the formation of this consortium, as well as its objectives and strategies, emphasizing the importance of natural and synthetic products as sources of antimicrobial compounds and the relevance of the diseases studied. Finally, we briefly describe the methods of the evaluation of the compounds in each biological model and the main achievements. The potential of the consortium to screen numerous compounds and identify new therapeutic agents is highlighted, demonstrating its significant contribution to addressing these infectious diseases. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

Back to TopTop